Solve the equation `tan^4x+tan^4y+2cot^2xcot^2y=3+sin^2(x+y)`
for the values of `xa n dydot`
Text Solution
Verified by Experts
`tan^(4) x+tan^(4)y+2 cot^(2) x cot^(2) y=3+sin^(2) (x+y)` or `tan^(4) x+tan^(4)y+2 cot^(2) x cot^(2) y-2=1+sin^(2) (x+y)` or `(tan^(2) x-tan^(2) y)^(2) +2(tan x tan y-cot x cot y)^(2)` `=-1 + sin^(2) (x+y)` Now `L.H.S. ge 0 and R.H.S. le 0` `rArr L.H.S.= R.H.S.=0` `rArr tan^(2) x=tan^(2) y and tan^(2) x tan^(2) y=1` and `sin^(2) (x+y)=0` `rArr tan^(2) y=1 and a+y=n pi, n in Z` `rArr x=mpi pm pi/4, m in Z and y=p pi pm pi/4, p in Z`.
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|34 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
Solve the equation tan^(4)x+tan^(4)y+2cot^(2)x cot^(2)y=3+sin^(2)(x+y) for the values of x and y.
Solve the equation : tan x+cot x=2
Solve the equation tan(x+(pi)/(4))=2cot x-1
Find all number of pairs x,y that satisfy the equation tan^4) x + tan^(4)y+2 cot^(2)x * cot^(2) y=3+ sin^(2)(x+y) .
If tan x+tan y=25 and cot x+cot y=30 then the value of tan(x+y) is
Solve the system of equations tan^2 x + cot^(2) x = 2cos^(2)y cos^(2)y+sin^(2)z=1
Solve the equation (dy)/(dx)=(x^(3)-2x tan^(-1)y)(1+y^(2))
The general solution of the equation tan^(2)(x + y) + cot^(2) ( x+ y) = 1 - 2x - x^(2) lie on the line is :
Solve the differential equation : sec^(2)x tan y dx + sec^(2) y tan x dy = 0
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)