Find the number of solution of the equation `1+e^cot^(2x)=sqrt(2|sinx|-1)+(1-cos2x)/(1+sin^4x)forx in (0,5pi)dot`
Text Solution
Verified by Experts
`L.H.S. =1+e^(cot^(2) x) ge 2` As `sqrt(2|sin x|-1) le 1` and `(1- cos 2x)/(1+sin^(4) x)=(2 sin^(2) x)/(1+sin^(4) x)=2/(1/(sin^(2) x)+sin^(2) x) le 1` `:. R.H.S.=sqrt(2|sin x|-1)+(1- cos 2x)/(1+sin^(4) x) le 2` Equation will be satisfied if `L.H.S.=R.H.S.=2`. This is possible when `cot^(2) x=0` and `|sin x|=1`. `rArr x=(2n+1) pi.2, n in Z`
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|34 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
Find the number of solution of the equation 1+e^(cot^(2)x)=sqrt(2|sin x|-1)+(1-cos2x)/(1+sin^(4)x) for x in(0,5 pi)
Find the number of solution of the equation cot^(2) (sin x+3)=1 in [0, 3pi] .
Find the number of solution of the equation sqrt(cos 2x+2)=(sin x + cos x) in [0, pi] .
Find the number of solutions of the equation 2cos3x(3-4sin^(2)x)=1 in [0,2 pi]
Find the number of real solutions of the equation sin^(-1)(e^(x))+cos^(-1)(x^(2))=pi//2 .
Find the number of solution of the equations |cot x|= cot x +(1)/(sin x), when in [0,2pi]
The number of real solution of the equation sqrt(1 + cos 2x) = sqrt2 sin^(-1) (sin x), -pi le x le pi , is
The number of solutions of the equation |cot x|=cot x+(1)/(sin x)(0<=x<=2 pi) is
Find the number of solutions of the equation 1+cos x+cos2x+sin x+sin2x+sin3x=0,x in[0,pi]
Number of solutions of the equation cot^(-1)sqrt(4-x^(2))+cos^(-1)(x^(2)-5)=(3pi)/2 is:
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)