Find the number of solution of `theta in [0,2pi]`
satisfying the equation `((log)_(sqrt(3))tantheta(sqrt((log)_(tantheta)3+(log)_(sqrt(3))3sqrt(3)=-1)`
Text Solution
Verified by Experts
`(log_(sqrt(3))tan theta)[sqrt((log_(sqrt(3))3)/(log_(sqrt(3))tan theta)+log_(e) (sqrt(3))^(3))]=-1` `(log_(sqrt(3))tan theta)[sqrt(2/(log_(sqrt(3))tan theta)+3)]=-1` Let `log_(sqrt(3))tan theta=y` `rArr ysqrt(2/y+3)=-1` `rArr sqrt(2/y+3) = (-1)/y` `rArr 2/y+3=1/y^(2)" "`(where `y lt 0`) `rArr y[3y^(2) +2y-1]=0` `rArr y(3y-1) (y+1)=0` `rArr y=-1" "( :' y" cannot be positive")` `rArr log_(sqrt(3))tan theta =-1` `rArr tan theta=1/sqrt(3)` `:. theta=pi/6 and (7pi)/6` Thus, there are two values of `theta` in `[0, 2pi]`
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|34 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
Find the number of solution of theta in[0,2 pi] satisfying the equation ((log)_(sqrt(3))tan theta(sqrt((log)_(tan theta)3+(log)_(sqrt(3))3sqrt(3))=-1
The number of solutions of theta in [0,2pi] satisfying the equation log_(sqrt(5))tan theta sqrt(log_(tan theta)5sqrt(5)+log_(sqrt(5))5sqrt(5))=-sqrt(6) is ____________.
Number of solutions of x in[0,pi] satisfying the equations (log_(sqrt3)tanx)(sqrt(log_(sqrt3)3sqrt3+log_(tanx)3))=-1 is/are_____
log9sqrt(3sqrt(3)sqrt(3))=?
log((1+i sqrt(3))/(1-i sqrt(3)))
Sum of the values of x satisfying the equation log_(3)(5x-6)log_(x)sqrt(3)=1 is
The number of values of x satisfying the equation log_(2)(log_(3)(log_(2)x)))>=sqrt(8-x)+sqrt(x-8) is :
log_(2-sqrt(3))backslash(2+sqrt(3))=-1
Find the integral value of x satisfying the equation |log_(sqrt(3))x-2|-|log_(3)x-2|=2
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)