Home
Class 12
MATHS
Find the number of solution of theta in ...

Find the number of solution of `theta in [0,2pi]` satisfying the equation `((log)_(sqrt(3))tantheta(sqrt((log)_(tantheta)3+(log)_(sqrt(3))3sqrt(3)=-1)`

Text Solution

Verified by Experts

`(log_(sqrt(3))tan theta)[sqrt((log_(sqrt(3))3)/(log_(sqrt(3))tan theta)+log_(e) (sqrt(3))^(3))]=-1`
`(log_(sqrt(3))tan theta)[sqrt(2/(log_(sqrt(3))tan theta)+3)]=-1`
Let `log_(sqrt(3))tan theta=y`
`rArr ysqrt(2/y+3)=-1`
`rArr sqrt(2/y+3) = (-1)/y`
`rArr 2/y+3=1/y^(2)" "`(where `y lt 0`)
`rArr y[3y^(2) +2y-1]=0`
`rArr y(3y-1) (y+1)=0`
`rArr y=-1" "( :' y" cannot be positive")`
`rArr log_(sqrt(3))tan theta =-1`
`rArr tan theta=1/sqrt(3)`
`:. theta=pi/6 and (7pi)/6`
Thus, there are two values of `theta` in `[0, 2pi]`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.1|12 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.2|6 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|34 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Find the number of solution of theta in[0,2 pi] satisfying the equation ((log)_(sqrt(3))tan theta(sqrt((log)_(tan theta)3+(log)_(sqrt(3))3sqrt(3))=-1

The number of solutions of theta in [0,2pi] satisfying the equation log_(sqrt(5))tan theta sqrt(log_(tan theta)5sqrt(5)+log_(sqrt(5))5sqrt(5))=-sqrt(6) is ____________.

Number of solutions of x in[0,pi] satisfying the equations (log_(sqrt3)tanx)(sqrt(log_(sqrt3)3sqrt3+log_(tanx)3))=-1 is/are_____

log9sqrt(3sqrt(3)sqrt(3))=?

log((1+i sqrt(3))/(1-i sqrt(3)))

Sum of the values of x satisfying the equation log_(3)(5x-6)log_(x)sqrt(3)=1 is

The number of values of x satisfying the equation log_(2)(log_(3)(log_(2)x)))>=sqrt(8-x)+sqrt(x-8) is :

log_(2-sqrt(3))backslash(2+sqrt(3))=-1

Find the integral value of x satisfying the equation |log_(sqrt(3))x-2|-|log_(3)x-2|=2