The equation `2 "cos"^(2)((x)/(2))"sin"^(2) x = x^(2) + (1)/(x^(2)), 0 le x le (pi)/(2)` has
Text Solution
Verified by Experts
The given equation is `2 cos^(2) (x/2) sin^(2) x=x^(2) +1/x^(2)` where `0 lt x le pi/2` `LHS=2 cos^(2) (x/2) sin^(2) x=(1+cos x) sin^(2)x` `:' 1+cos x lt 2 and sin^(2) x le 1` for `0 lt x lt pi/2` `:. (1+ cos x) sin^(2) x lt 2` Also, `R.H.S.=x^(2) +1/x^(2) ge 2`
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|34 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
The number of solutions of 2"cos"^(2)((x)/(2))"sin"^(2) x =x^(2) + (1)/(x^(2)), 0 le x le (pi)/(2), is
The equation 2sin^(2)((x)/(2))cos^(2)x=x+(1)/(x),0 lt x le(pi)/(2) has
The number of solution(s) of 2cos^(2)(x/2)sin^(2)x=x^(2)+1/x^(2), 0 le x le pi//2 , is/ are-
2 tan^(-1) x = sin^(-1) ((2x)/(1+x^(2))) , 1 le x le 1
The solution of the equation "cos"^(2) x-2 "cos" x = 4 "sin" x - "sin" 2x (0 le x le pi) , is
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)