If `x in (0,2pi)a n dy in (0,2pi)`
, then find the number of distinct ordered pairs `(x , y)`
satisfying the equation `9cos^2x+sec^2y-6cosx-4secy+5=0`
Text Solution
Verified by Experts
`9 cos^(2) x+sec^(2) y-6 cos x-4 sec y+5=0` `rArr (3 cos x-1)^(2)+(sec y-2)^(2)=0` `rArr cos x =1/3` and `sec y=2` (simultaneously) `:.` Number of distance x in `(0, 2pi)` is 2 and number of distinct y in `(0, 2pi)` is 2. `:.` Number of distinct ordered pairs `(x, y)=2xx2=4`
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|34 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
If x in(0,2 pi) and y in(0,2 pi), then find the number of distinct ordered pairs (x,y) satisfying the equation 9cos^(2)x+sec^(2)y-6cos x-4sec y+5=0
If x, y in [0,2pi] then find the total number of order pair (x,y) satisfying the equation sinx .cos y = 1
Find the number of values of x in (0,2 pi) satisfying the equation cot x-2sin2x=1
Number of ordered pairs (a,x) satisfying the equation sec^(2)(a+2)x+a^(2)-1=0;-pi
The number of values of x in [0,2pi] satisfying the equation 3cos2x-10cosx+7=0 is
The number of ordered pair(s) (x .y) satisfying the equationssin x*cos y=1 and x^(2)+y^(2)<=9 pi^(2) is/are
The number of ordered pair(s) (x, y) of real numbers satisfying the equation 1+x^(2)+2x sin(cos^(-1)y)=0 , is :
The number of values of x in the interval [0,3 pi] satisfying the equation cos^(2)x+2cos x-2=0 is
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)