Home
Class 12
MATHS
Solve: 16^sin^(2x)16^cos^(2x)=10 ,0lt=x<...

Solve: `16^sin^(2x)16^cos^(2x)=10 ,0lt=x<2pi`

Text Solution

Verified by Experts

`16^(sin^(2)x)+16^(1-sin^(2) x)=10`
If `16^(sin^(2)x)=t`, then `t+16/t=10`
Then Eq. (i) becomes
`t^(2)-10t+16=0`
or `t=2, 8`
`rArr 16^(sin^(2) x)=16^(1//4)` or `16^(3//4)`
`rArr sin x= pm 1/2, pm sqrt(3)/2`
Now `sin x=1/2`, then `x=pi/6, (5pi)/6`
`sin x=-1/2`, then `x=(7pi)/6` or `(11pi)/6`
`sin x= sqrt(3)/2`, then `x=pi/3, (2pi)/3`
`sin x= - sqrt(3)/2`, then `x=(4pi)/3, (5 pi)/3`
Hence, there will be eight solutions in all.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.1|12 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.2|6 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|34 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Solve: 16^(sin^(2)x)+16^(cos^(2)x)=10,0<=x<2 pi

No of solutions of 16^(sin^(2)x)+16^(cos^(2)x)=10,0<=x<=2 pi is

Total number of solutions of 16^(sin^(2)x)+16^(cos^(2)x)=10" in "[0,2pi] are

Solve 16x^(2)+4=0

solve 16x^(2)+17x+5

Total number of solution of 16^(cos^(2)x)+16^(sin^(2)x)=10 in x in[0,3 pi] is equal to (A)4(B)8(C)12(D)16

If 0 <= x <= pi, then the solution of the equation 16^(sin^2) x + 16 ^(cos^2) x = 10 is given by x equal to (i) pi/6,pi/3 (ii) pi/3,pi/2 (iii) pi/6,pi/2 (iv) none of these

Solve for x:5^(2x)-16.5^(x)-225=0