`16^(sin^(2)x)+16^(1-sin^(2) x)=10` If `16^(sin^(2)x)=t`, then `t+16/t=10` Then Eq. (i) becomes `t^(2)-10t+16=0` or `t=2, 8` `rArr 16^(sin^(2) x)=16^(1//4)` or `16^(3//4)` `rArr sin x= pm 1/2, pm sqrt(3)/2` Now `sin x=1/2`, then `x=pi/6, (5pi)/6` `sin x=-1/2`, then `x=(7pi)/6` or `(11pi)/6` `sin x= sqrt(3)/2`, then `x=pi/3, (2pi)/3` `sin x= - sqrt(3)/2`, then `x=(4pi)/3, (5 pi)/3` Hence, there will be eight solutions in all.
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|34 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
Solve: 16^(sin^(2)x)+16^(cos^(2)x)=10,0<=x<2 pi
No of solutions of 16^(sin^(2)x)+16^(cos^(2)x)=10,0<=x<=2 pi is
Total number of solutions of 16^(sin^(2)x)+16^(cos^(2)x)=10" in "[0,2pi] are
Solve 16x^(2)+4=0
solve 16x^(2)+17x+5
Total number of solution of 16^(cos^(2)x)+16^(sin^(2)x)=10 in x in[0,3 pi] is equal to (A)4(B)8(C)12(D)16
If 0 <= x <= pi, then the solution of the equation 16^(sin^2) x + 16 ^(cos^2) x = 10 is given by x equal to (i) pi/6,pi/3 (ii) pi/3,pi/2 (iii) pi/6,pi/2 (iv) none of these
Solve for x:5^(2x)-16.5^(x)-225=0
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)