Find the number of solution of `[cosx]+|sinx=1inpilt=xlt=3pi`
(where `[]`
denotes the greatest integer function).
Text Solution
Verified by Experts
We have `[cos x]+|sin x|=1` Now, `-1 le cos x le 1` `:.` Possible values of `[cos x]` are `0, 1, -1` Case I : `[cos x]=-1` or `cos x in [-1, 0)` `:. -1 +|sin x|=1` `rArr |sin x|=2` (not possible) Case II : `[cos x]=0` or `cos x in [0, 1)` `:. |sin x|=1` `rArr x=(3pi)/2, (5pi)/2` Case III : `[cos x]=1` or `cos x=1` `:. |sin x|=0` `:. x=2pi` Hence, there are three solutions.
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|34 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
Find the number of solution of [cosx]+|sinx|=1, x inpilt=xlt=3pi (where [ ] denotes the greatest integer function).
Find the number of solution of the equations |cos x |=[x] , (where [.] denotes the greatest integer function ).
The number of solutions of [sin x]+cos x=1 in x in[0,6 pi] where [ ] denotes greatest integer function
The number of solutions of [sin x+ cos x]=3+ [- sin x]+[-cos x] (where [.] denotes the greatest integer function), x in [0, 2pi] , is
The number of solutions of [sinx+cosx]=3+[-sinx]+[-cosx](w h e r e[] denotes the greatest integer function), x in [0,2pi] , is 0 (b) 4 (c) infinite (d) 1
Find number of solutions for equation [sin^(-1)x]=x-[x] , where [.] denotes the greatest integer function.
Number of solutions of the equation x^(2)-2=[sinx] , where [.] denotes the greatest integer function, is
f(x)=1+[cos x]x in 0<=x<=(pi)/(2) (where [.] denotes greatest integer function)
Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then
Number of solutions of sin x=[x] where [.] denotes the greatest integer function is
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)