If the the equation `a sin x + cos 2x=2a-7` possesses a solution, then find the values of a.
Text Solution
Verified by Experts
The given equation can be written as `a sin x+(1-2 sin^(2) x)=2a-7` or `2 sin^(2) x-a sin x +2a-8=0` or `sin x= (a pm sqrt(a^(2)-8(2a-8)))/4=(a pm (a-8))/4` `=((a-4))/2 " "( :' sin x=2" is not possible")` Equation has solution if `-1 le (a-4)//2 le 1`. Thus, `-2 le (a-4) le 2` `2 le a le 6`
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|34 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
If the equation a sin x+cos2x=2a-7 possesses a solution,then find the value of a .
The equation a sin x+cos2x=2a-7 possesses a solution if
The equation a "cos" x - "cos" 2x = 2a-7 passesses a solution if
Let a denotes the number of non-negative values of p for which the equation p.2^x +2^(-x)=5 possess a unique solution. Then find the value of 'a'.
The equation K-sin theta+cos2 theta=2k-7 possesses a real solution if
Consider the equaiton k sinx + cos 2x=2k-7 If the equaiton possesses solution then that what is the minimum value of k ?
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)