We have `sin 2x=4 cos x` `:. 2 sin x cos x=4 cos x` Here, we should not cancel `cos x`. Now, `2 sin x cos x -4 cos x=0` `:. cos x(2 sin x-4)=0` We have `cos x =0 or sin x=2`, which is not possible. `:. x=(2n+1) pi/2, n in Z` 3. The solution of the equation should not contain such values of angles which make any of the terms undefined or infinite in the original equation. Domain should not change while simplifying the equation. If it changes, necessary corrections must be made.
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|34 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
Solve sin 2x+cos x=0
Solve sin 2x+cos 4x=2 .
Solve: sin 2x gt cos x .
Solve sin 5 x = cos 2 x .
Solve 2 sin^(3) x=cos x .
Solve sin 3x + cos 2 x =-2
Solve sin5x=cos2x
Solve sin ^ (2) x- (cos x) / (4) = (1) / (4)
Solve |sin x+cos x|=|sin x|+|cos x|,x in[0,2 pi]
Solve sin x("cos"x/4-2 sin x)+(1+"sin"x/4-2 cos x)cos x =0 .
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)