Solve `tan x+tan 2x+tan 3x = tan x tan 2x tan 3x, x in [0, pi]`.
Text Solution
AI Generated Solution
To solve the equation \( \tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x \) for \( x \) in the interval \([0, \pi]\), we can use a known identity for the tangent function.
### Step-by-step Solution:
1. **Recognize the Identity**:
We know that the equation \( \tan a + \tan b + \tan c = \tan a \tan b \tan c \) holds true when \( a + b + c = n\pi \) for some integer \( n \). Here, we can set \( a = x \), \( b = 2x \), and \( c = 3x \).
2. **Set Up the Equation**:
...
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|34 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
Solve tan x+tan2x+tan3x=tan x tan2x tan3x,x in[0,pi]
tan x+tan2x+tan3x=0
tan 5x tan3x tan2x=
tan3x-tan2x-tan x=tan3x tan2x tan x
Solve tan x+tan 2x + sqrt3 tan x tan 2x= sqrt3
tan x+tan2x=tan3x
Solve (tan 3x - tan 2x)/(1+tan 3x tan 2x)=1 .
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)