We have `4 cos theta-3 sec theta = tan theta` or `4 cos theta-3/(cos theta)= (sin theta)/(cos theta)` or `4 cos^(2) theta-3= sin theta` or `4(1- sin^(2) theta)-3= sin theta` or `4 sin^(2) theta + sin theta-1=0` or `sin theta=(-1 pm sqrt(1+16))/8=(-1 pm sqrt(17))/8` Now, `sin theta=(-+sqrt(17))/8`. Thus, `sin theta=sin alpha`, where `sin alpha=(-1+sqrt(17))/8` `rArr theta=n pi +(-1)^(n) alpha`, where `sin alpha =(-1 + sqrt(17))/8 and n in Z` Also, `sin theta=(-1-sqrt(17))/8` `rArr sin theta= sin beta`, where `sin beta=(-1-sqrt(17))/8` `rArr theta=n pi +(-1)^(n) beta, n in Z` where `sin beta =(-1-sqrt(17))/8`
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|34 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
Solve 4cos theta-3sec theta=tan theta
Solve that following equations: 4cos theta-3sec theta=tan theta
(sin theta-cos theta + 1) / (sin theta + cos theta-1) = sec theta + tan theta