Changing all the values in terms of `cos theta`, we get `5(2 cos^(2) theta-1)+(1+cos theta)+1=0` or `10 cos^(2) theta+cos theta-3=0` or `(5 cos theta+3) (2 cos theta-1) =0` `rArr cos theta=1/2, (-3)/5` `rArr theta=pi/3, - pi/3, cos^(-1) (-3/5)= pi- cos^(-1) 3/5` and `-pi + cos^(-1) 3/5" "[ :' -pi lt theta lt pi]`
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|34 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
Solve: 5cos2 theta+2cos^(2)((theta)/(2))+1=0,-pi
Solve the following equation (i) 5cos2theta+2cos^(2)"(theta)/(2)+1=0 , -(pi)/(2) lt theta lt (pi)/(2) (ii) sin7theta+sin4theta+sintheta=0 , 0 le theta le pi (iii) tantheta+sectheta=sqrt(3) , 0 le theta le 2pi
If 5cos2 theta+2 "cos"^(2) (theta)/2+1=0 , when (0 lt thetaltpi) the the value of theta are
If 5cos2 theta+2cos^(2)theta=0,-pi
If : cos 6 theta + cos 4 theta + cos 2 theta + 1 = 0 , where, 0 lt theta lt 180^(@) , then : theta =
Solve for theta,2 cos^2 theta+sin theta-1=0,0 le theta le pi/2
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)