If `(costheta+cos2theta)^3=cos^3theta+cos^3 2theta,`
then the least
positive value of `theta`
is equal to
`pi/6`
(b) `pi/4`
(c) `pi/3`
(d) `pi/2`
Text Solution
Verified by Experts
We have `(cos theta+ cos 2 theta)^(3)=cos^(3) theta+cos^(3) 2 theta` i.e., `(a+b)^(3)=a^(3)+b^(3)` `rArr ab(a+b)=0` `rArr cos theta=0 or cos 2 theta=0 or cos theta+ cos 2 theta=0` `rArr theta_(min)=pi/2 or theta_(min)=pi/4 or theta_(min)=pi/3` `rArr theta_(min)=pi/4`
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|34 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
If (cos theta+cos2 theta)^(3)=cos^(3)theta+cos^(3)2 theta, then the least positive value of theta is equal to (pi)/(6) (b) (pi)/(4)( c) (pi)/(3)( d) (pi)/(2)
If cos2 theta*cos3 theta*cos theta=(1)/(4) for 0
The period of cos5 theta is (a) pi^(2) (b) 2 pi (c) 2 pi/5 (d) pi/3
If sin^(22)theta+cos^(42)theta=(3)/(4) where theta in[0,(pi)/(2)] then find the sum of all values of theta (a) pi (b) -pi(c)(5 pi)/(4) (d) (pi)/(2)
If theta = pi/7 prove that cos theta* cos 2theta * cos 3theta = 1/8
If 2cos(theta)+sin(theta)=1 and (3 pi)/(2)
If theta=(2 pi)/(4033), then cos theta*cos2 theta*cos3 theta*....cos2016 theta is equal
If 2 sin(theta+(pi)/(3))=cos(theta-(pi)/(6)) , then tantheta =
For -pi/2
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)