Solve `(tan^(2) x+2sqrt(3) tan x+7) (cot^(2) y-2 sqrt(3) cot y+8) le 20` for x and y.
Text Solution
Verified by Experts
We have `((tan x + sqrt(3))^(2)+4)((cot y-sqrt(3))^(2)+5) le 20` Now, `L.H.S. ge 20`. Therefore, we must have `(tan x+sqrt(3))^(2)=0 and (cot y-sqrt(3))^(2)=0` `rArr tan x=-sqrt(3) and cot y=sqrt(3)` `rArr tan x=-sqrt(3) and tan y=1/sqrt(3)` `rArr x=n pi-pi/3, n in Z` and `y=mpi+pi/6, m in Z`
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|34 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
Solve tan x+tan2x+sqrt(3)tan x tan2x=sqrt(3)
Solve tan x+tan 2x + sqrt3 tan x tan 2x= sqrt3
Solve 2 cot 2x -3 cot 3x = tan 2x .
Solve tan2x=-cot(x+(pi)/(3))
Solve the equation tan^(4)x+tan^(4)y+2cot^(2)x cot^(2)y=3+sin^(2)(x+y) for the values of x and y.