Find common roots of the equations `2sin^2x+sin^2 2x=2a n dsin2x+cos2x=tanxdot`
Text Solution
Verified by Experts
We have `2 sin^(2) x+ sin^(2) 2x=2` ...(i) and `sin 2x+cos 2x=tan x` ...(ii) Solving Eq. (i), `sin^(2) 2x=2 cos^(2) x` `rArr 4 sin^(2) x cos^(2) x =2 cos^(2) x` `rArr cos^(2) x (2 sin^(2) x-1)=0` `rArr 2 cos^(2) x cos 2x=0` `rArr cos x=0 or cos 2x=0` `rArr x=(2n+1) pi/2 or x=(2n+1) pi/4, n in Z` ...(iii) Now solving Eq. (ii), `(2 tan x+1-tan^(2) x)/(1+tan^(2) x)=tan x` `rArr tan^(3) x+ tan^(2) x-tan x-1=0` `rArr (tan^(2) x-1) (tan x+1) =0` `rArr tan x= pm 1` `rArr x= n pi pm pi/4, n in Z` ...(iv) From Eqs. (iii) and (iv) , common roots are `(2n+1) pi/4`.
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|34 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
Find common roots of the equations 2sin^(2)x+sin^(2)2x=2 and sin2x+cos2x=tan x
Find the common roots of the equation 2 sin^(2)x +sin^(2) x =2 and sin 2x+ cos 2x=tanx .
Find the number of solutions of the equation 2 sin^(2) x + sin^(2) 2x = 2 , sin 2x + cos 2x = tan x in [0, 4 pi] satisfying the condition 2 cos^(2) x + sin x le 2 .
Solve the equation sin^2x-cos^2x=(1)/(2)
Solve the equation 4sin x cos x+2sin x+2cos x+1=0
Find all values of a' for which every root of the quation,a cos2x+|a|cos4x+cos6x=1 is also a root of the equation,sin x cos2x=sin2x cos3x-(1)/(2)sin5x, and conversely,every root of the second equation is also a root of the first equation.
If sin^(4)2x+cos^(4)2x=sin2x*cos2x then x=
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)