We have, `sqrt(3) cos x + sin x=sqrt(2)` ...(1) Dividing both sides by `sqrt((sqrt(3))^(2)+1^(2))=2`, we get `sqrt(3)/2 cos x+1/2 sin x=1/sqrt(2)` `rArr cos(x-pi/6)=1/sqrt(2)` `rArr cos(x-pi/6)="cos" pi/4` `rArr x-pi/6=2n pi pm pi/4, n in Z` `rArr x= 2n pi pm pi/4+pi/6` `rArr x=2npi +pi/4+pi/6 or x=2npi - pi/4+pi/6` `rArr x=2n pi +(5 pi)/12 or x=2npi-pi/12`, where `n in Z`
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|34 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
Solve the equation sqrt(3)cos x+sin x=sqrt(2)
Solve the equation sqrt(x)=x-2
The set of values of 'a' for which the equation sqrt(a) "cos" x -2 "sin" x = sqrt(2) + sqrt(2-a) has a solution is
Solve the equation 2sin17x+sqrt3cos5x+sin5x=0 .
Solve the equaiton :2sin x+sqrt(3)sin x=0
The equation sqrt(3)sin x+cos x=4 has
Solve the equation sin x + cos x -2sqrt2 sin x cos x =0
The number of real solution of the equation sqrt(1 + cos 2x) = sqrt2 sin^(-1) (sin x), -pi le x le pi , is
The equation sqrt(3) cdot sin x + cos x = 4 has
Solve the trigonometric equation: sqrt(3)cos x-sin x=1
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)