If `x , y in [0,2pi]`
, then find the total number of ordered pairs `(x , y)`
satisfying the equation `sinxcosy=1`
Text Solution
Verified by Experts
`sin x cos y=1` `rArr sin x=1, cos y=1 or sin x=-1, cos y =-1` If `sin x=1. cos y=1`, hence, `x=pi//2, y=0, 2pi` If `sin x=-1, cos y =-1`, hence, `x=3pi//2, y=pi` Thus, the possible ordered ordered pairs are `(pi/2, 0), (pi/2, 2pi)` and `((3pi)/2, pi)`.
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|34 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
If x, y in [0,2pi] then find the total number of order pair (x,y) satisfying the equation sinx .cos y = 1
If x in(0,2 pi) and y in(0,2 pi), then find the number of distinct ordered pairs (x,y) satisfying the equation 9cos^(2)x+sec^(2)y-6cos x-4sec y+5=0
Find the number of integral ordered pairs (x,y) satisfying the equation log(3x+2y)=logx+logy.
For x in[-2 pi,3 pi] and y in R, the number of ordered pairs (x,y) satisfying the equation sqrt(3)sin x-cos x-3y^(2)+6y-5=0, is equal to
The number of ordered pair(s) (x .y) satisfying the equationssin x*cos y=1 and x^(2)+y^(2)<=9 pi^(2) is/are
Number of ordered pairs (a,x) satisfying the equation sec^(2)(a+2)x+a^(2)-1=0;-pi
The number of ordered pair(s) (x, y) of real numbers satisfying the equation 1+x^(2)+2x sin(cos^(-1)y)=0 , is :
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)