Home
Class 12
MATHS
If x , y in [0,2pi] , then find the tota...

If `x , y in [0,2pi]` , then find the total number of ordered pairs `(x , y)` satisfying the equation `sinxcosy=1`

Text Solution

Verified by Experts

`sin x cos y=1`
`rArr sin x=1, cos y=1 or sin x=-1, cos y =-1`
If `sin x=1. cos y=1`, hence, `x=pi//2, y=0, 2pi`
If `sin x=-1, cos y =-1`, hence, `x=3pi//2, y=pi`
Thus, the possible ordered ordered pairs are `(pi/2, 0), (pi/2, 2pi)` and `((3pi)/2, pi)`.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.1|12 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.2|6 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|34 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

If x, y in [0,2pi] then find the total number of order pair (x,y) satisfying the equation sinx .cos y = 1

If x in(0,2 pi) and y in(0,2 pi), then find the number of distinct ordered pairs (x,y) satisfying the equation 9cos^(2)x+sec^(2)y-6cos x-4sec y+5=0

Find the number of integral ordered pairs (x,y) satisfying the equation log(3x+2y)=logx+logy.

For x in[-2 pi,3 pi] and y in R, the number of ordered pairs (x,y) satisfying the equation sqrt(3)sin x-cos x-3y^(2)+6y-5=0, is equal to

The number of ordered pair(s) (x .y) satisfying the equationssin x*cos y=1 and x^(2)+y^(2)<=9 pi^(2) is/are

Number of ordered pairs (a,x) satisfying the equation sec^(2)(a+2)x+a^(2)-1=0;-pi

The number of ordered pair(s) (x, y) of real numbers satisfying the equation 1+x^(2)+2x sin(cos^(-1)y)=0 , is :