`cos^(50)x-sin^(50)x=1` or `cos^(50)x=1+sin^(50)x` `L.H.S. le 1` and `R.H.S. ge 1` Hence, we must have `cos^(50) x=1+sin^(50)x=1` or `sin x=0` or `x=n pi, n in Z`
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|34 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
(i)If 3sin x+4cos ax=7 has atleast one solution; find the possible values of a.(ii) Solve cos^(50)x-sin^(50)=1( iii) Solve cos4 theta+sin5 theta=2
Solve sin^(-1) x + sin^(-1) (1 - x) = cos^(-1) x
Solve cos^(-1)(sin(cos^(-1)x))=(pi)/(3)
Solve cos 7x= sin 3x
The general solution of equation sin^(50)x-cos^(50)x=1
Solve the equation : cos^(7)x+sin^(4)x=1
Solve :cos(sin^(-1)x)=(1)/(6)
Solve: cos(sin^(-1)x)=(1)/(6)
Solve cos x-sqrt3 sin x =1
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)