Solve `sin^2x+cos^2y=2sec^2z`
for `x , y ,a n dzdot`
Text Solution
Verified by Experts
`L.H.S. = sin^(2)x+cos^(2) y le 2" "[ :' sin^(2)x le and cos^(2) y le 1]` `R.H.S.=2 sec^(2) z ge 2` Hence, `L.H.S.=R.H.S.` only when `sin^(2) x=1`, `cos^(2) y=1, and 2 sec^(2) z=2`. Thus, `cos^(2) x=0, sin^(2) y=0, cos^(2) z=1` `rArr cos x=0, sin y=0, sin z =0` `x=(2m+1) pi/2, y = n pi` and `z=tpi`, where `m, n t in Z`.
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|34 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
Solve sin^(2)x+cos^(2)y=2sec^(2)z for x,y, and z
Solve sin ^ (2) x + cos ^ (2) y = 2sec ^ (2) z
If x+y=z then cos^(2)x+cos^(2)y+cos^(2)z-2cos x cos y cos z is equal to
Solve the equation 2sin x+cos y=2 for the value of x and y.
Solve: (dy)/(dx)+x sin2y=x^(3)cos^(2)y
If x + y = z then cos ^ (2) x + cos ^ (2) y + cos ^ (2) z-2cos x cos y cos z =
Solve the equation for x and y , |sin x + cos x|^( sin^(2) x-1//4)=1+|siny| and cos^(2)y=1+sin^(2)y .
prove that: cos ^ (2) x + cos ^ (2) y-2cos x * cos y * cos (x + y) = sin ^ (2) (x + y)
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)