Solve for `xa n dy :sqrt(3)sinx+cosx=8y-y^2-18 ,w h e r e0lt=xlt=4pi, y in R`
Text Solution
Verified by Experts
R.H.S. `8y-y^(2)-18=-[y^(2)-8y]-18` `=-[(y-4)^(2)-16]-18` `=-2-(y-4)^(2)` `:. R.H.S. le -2` whereas `L.H.S. ge -2` `:.` Equality is possible only when `L.H.S.=R.H.S.=-2` Now, for `L.H.S., 2 cos (x-pi//3)=-2` `:. cos (x-pi//3)=-1` `:. x-pi//3=pi or 3pi` `:. x=4pi//3, 10 pi//3` For `R.H.S.=-2, y=4`.
Topper's Solved these Questions
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.1|12 Videos
TRIGONOMETRIC EQUATIONS
CENGAGE|Exercise Exercise 4.2|6 Videos
TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS
CENGAGE|Exercise Question Bank|34 Videos
TRIGONOMETRIC FUNCTIONS
CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
Similar Questions
Explore conceptually related problems
Solve for x and y:sqrt(3)sin x+cos x=8y-y^(2)-18, where 0<=x<=4 pi,y in R
Solve the equation (sinx+cosx)^(1+sin2x)=2, when 0lt=xlt=pi
Write the range of the function f(x)=sin[x],w h e r e(-pi)/4lt=xlt=pi/4 .
Find the area of the region bounded by the x-axis and the curves defined by y=tanx(w h e r e-pi/3lt=xlt=pi/3) and y=cotx(w h e r epi/6lt=xlt=(3x)/2) .
Which of the following is/are true? (dy)/(dx)fory=sin^(-1)(cosx),w h e r ex in (0,pi),i s-1 (dy)/(dx)fory=sin^(-1)(cosx),w h e r ex in (0,2pi),i s1 (dy)/(dx)fory=cos^(-1)(sinx),w h e r ex in (-pi/2,pi/2),i s-1 (dy)/(dx)fory=cos^(-1)(sinx),w h e r ex in (pi/2,(3pi)/2),i s-1
Solve the differential equation: (dy)/(dx)=sqrt(4-y^(2)) , (-2 lt y lt 2)
If y=log(sinx-cosx) , then (dy)/(dx) at x=(pi)/(2) is :
Solve: (2+sinx)/(1+y) (dy)/(dx)=-cosx
CENGAGE-TRIGONOMETRIC EQUATIONS-Archives (Matrix Match Type)