Home
Class 12
MATHS
Determine the smallest positive value of...

Determine the smallest positive value of `x` which satisfy the equation `sqrt(1+sin2x)-sqrt(2)cos3x=0`

Text Solution

Verified by Experts

The correct Answer is:
`pi/16`

`sqrt(1 + sin 2x) - sqrt2 cos 3x = 0`
or `sqrt(1 + sin 2x) = sqrt2 cos 3x`
or `1 + sin 2x = 2 cos^(2) 3x`
`1 + sin 2x = 1 + cos 6x`
or `cos ((pi)/(2) - 2x) = cos 6x`
or `(pi)/(2) - 2x = 2n pi -+ 6x`
`:. X = (npi)/(2) - (pi)/(8) or x = (npi)/(4) + (pi)/(16)`
We get smallest value when `n = 0 " then " x = pi//16`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.4|9 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.5|5 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.2|6 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|34 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Determine the smallest positive value of (32x)/(pi) which satisfy the equation sqrt(1+sin 2x)-sqrt(2)cos 3x=0

The value of x satisfying the equation x=sqrt(2+sqrt(2-sqrt(2+x))) is

Solve the equation sqrt(3)cos x+sin x=sqrt(2)

The smallest positive value of x( in degrees ) satisfying the equation (sin x-sin7x)/(cos7x-cos x)=tan6x is

The smallest positive value of x (in radians) satisfyinig the equation (sin x)(cos^(3)x)-(cos x)(sin^(3)x)=(1)/(4)

2sin^(2)x+sqrt(3)cos x+1=0

The smallest positive value of x (in radians) satisfying the equation (log)_(cos x)((sqrt(3))/(2)sin x)=2-(log)_(sec x)(tan x) is (a) (pi)/(12) (b) (pi)/(6)(cc)(pi)/(4) (d) (pi)/(3)

Find the smallest positive root of the equation sqrt(sin(1-x))=sqrt(cos x)