Home
Class 12
MATHS
Solve sin^(4)x=1+tan^(8)x....

Solve `sin^(4)x=1+tan^(8)x`.

Text Solution

Verified by Experts

The correct Answer is:
No solution

`sin^(4) x=1 + tan^(8) x`
Now, `1+tan^(8) x ge 1 and sin^(4) x le 1`
`rArr L.H.S.=R.H.S.`
Hence, for the given equation to be satisfied,
`sin^(4) x=1 and 1+ tan^(8) x=1`
`rArr sin^(2) x=1 and tan^(8) x=0`
which never possible, since `sin x` and `tan x` vanish simultaneously.
Therefore, the given equation has no solution.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.8|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.9|6 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.6|4 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|34 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Solve tan^(-1)2x + tan^(-1)3x = pi/4

Solve :tan^(-1)2x+tan^(-1)3x=(pi)/(4)

Solve tan^(-1) x + sin^(-1) x = tan^(-1) 2x

Solve : tan^(-1) 4x +tan^(-1)6x = pi/4

Solve sin^(2)x+(1)/(4)sin^(2)3x=sin x sin^(2)3x

Solve tan^(-1)x+sin^(-1)x=tan^(-1)2x

Solve : (i)" "tan^(-1). x/2 +tan^(-1). x/3 = pi/4 , sqrt(6) gt x gt 0 (ii)" "sin(sin^(-1) . 1/5+cos^(-1)x)=1

Solve sin x + (tan x) / (2) = 0

Solve for x:tan^(-1)3x+tan^(-1)2x=(pi)/(4)

Solve for x : i) cos(sin^(-1)x)=1/2 ii) tan^(-1)x=sin^(-1)1/sqrt(2) iii) sin^(-1)x-cos^(-1)x=pi/6