Home
Class 12
MATHS
If the equation tan (P cot x)=cot (P tan...

If the equation `tan (P cot x)=cot (P tan x)` has a solution in `x in (0, pi)-{pi/2}`, then prove that `P le pi/4`.

Text Solution

Verified by Experts

`tan (P cot x)=cot (P tan x)`
or `tan (P cot x)= tan (pi/2 - P tan x)`
or `P cot x=pi/2-P tan x`
or `P(tan x+ cot x) = pi/2` where `P gt 0`
Now. `tan x+ cot x ge 2`
or `2P le P (tan x+ cot x) = pi/2 or P le pi/4`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.8|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.9|6 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.6|4 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|34 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Solve the equation tan(x+(pi)/(4))=2cot x-1

The equation tan^(-1)x+2cot^(-1)x=(2)/(3)pi has

Solve the equation tan2x=-cot(x+(pi)/(6))

Prove that tan^(-1)(cot x)+cot^(-1)(tan x)=pi-2x

If tan(cot x)=cot(tan x), prove that :sin2x=(4)/((2n+1)pi)

If tan(pi cos x)=cot(pi sin x), then cos(x-(pi)/(4)) is

If tan ((p pi)/4)=cot ((qpi)/4) , then prove that p+q=2(2n+1), n in Z .

y = tan ^ (- 1) (cot x) + cot ^ (- 1) (tan x), (pi) / (2)

Number of solutions of the equation |cot x| = cot x + csc x , where 0 le x le 2pi is