Home
Class 12
MATHS
If tan^(2) {pi(x+y)}+cot^(2) {pi (x+y)}=...

If `tan^(2) {pi(x+y)}+cot^(2) {pi (x+y)}=1+sqrt((2x)/(1+x^(2)))` where `x, y in R`, then find the least possible value of y.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^2(\pi(x+y)) + \cot^2(\pi(x+y)) = 1 + \sqrt{\frac{2x}{1+x^2}} \) and find the least possible value of \( y \), we can follow these steps: ### Step 1: Analyze the Left-Hand Side (LHS) The left-hand side of the equation is \( \tan^2(\pi(x+y)) + \cot^2(\pi(x+y)) \). We know that: \[ \tan^2 a + \cot^2 a \geq 2 \] This inequality holds true for any angle \( a \), and the equality occurs when \( a = \frac{\pi}{4} \) (or \( \tan a = 1 \)). Therefore, we can conclude: \[ \tan^2(\pi(x+y)) + \cot^2(\pi(x+y)) \geq 2 \] ### Step 2: Analyze the Right-Hand Side (RHS) Now, let's analyze the right-hand side: \[ 1 + \sqrt{\frac{2x}{1+x^2}} \] To find the maximum value of \( \sqrt{\frac{2x}{1+x^2}} \), we can set \( f(x) = \frac{2x}{1+x^2} \) and find its maximum. ### Step 3: Find the Maximum of \( \frac{2x}{1+x^2} \) To find the maximum value of \( f(x) \), we can differentiate it: \[ f'(x) = \frac{(1+x^2)(2) - 2x(2x)}{(1+x^2)^2} = \frac{2(1+x^2 - 2x^2)}{(1+x^2)^2} = \frac{2(1-x^2)}{(1+x^2)^2} \] Setting \( f'(x) = 0 \): \[ 1 - x^2 = 0 \implies x = 1 \text{ (since } x \in \mathbb{R}\text{)} \] Now, we evaluate \( f(1) \): \[ f(1) = \frac{2 \cdot 1}{1 + 1^2} = \frac{2}{2} = 1 \] Thus, the maximum value of \( \sqrt{\frac{2x}{1+x^2}} \) is \( 1 \) when \( x = 1 \). ### Step 4: Substitute Back into the RHS Substituting this back into the RHS: \[ 1 + \sqrt{\frac{2x}{1+x^2}} \leq 1 + 1 = 2 \] ### Step 5: Set LHS Equal to RHS Since both sides can equal \( 2 \), we set: \[ \tan^2(\pi(x+y)) + \cot^2(\pi(x+y)) = 2 \] This equality holds when \( \tan(\pi(x+y)) = 1 \), which occurs when: \[ \pi(x+y) = \frac{\pi}{4} + n\pi \quad (n \in \mathbb{Z}) \] ### Step 6: Solve for \( y \) From \( \pi(x+y) = \frac{\pi}{4} + n\pi \): \[ x + y = \frac{1}{4} + n \] Thus, \[ y = \frac{1}{4} + n - x \] ### Step 7: Find the Least Possible Value of \( y \) To minimize \( y \), we can choose \( n = 0 \) and \( x = 1 \): \[ y = \frac{1}{4} + 0 - 1 = \frac{1}{4} - 1 = -\frac{3}{4} \] ### Conclusion The least possible value of \( y \) is: \[ \boxed{-\frac{3}{4}} \]

To solve the equation \( \tan^2(\pi(x+y)) + \cot^2(\pi(x+y)) = 1 + \sqrt{\frac{2x}{1+x^2}} \) and find the least possible value of \( y \), we can follow these steps: ### Step 1: Analyze the Left-Hand Side (LHS) The left-hand side of the equation is \( \tan^2(\pi(x+y)) + \cot^2(\pi(x+y)) \). We know that: \[ \tan^2 a + \cot^2 a \geq 2 ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.8|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.9|6 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.6|4 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|34 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

If x^(2)+x=1-y^(2) , where x gt 0, y gt 0 , then find the maximum value of x sqrt(y) .

If tan^(-1) y = tan^(-1) x + tan^(-1)((2x)/(1 -x^(2)))", where" |x| lt 1/sqrt3 . Then, the value of y is

If tan^(2)(x+y)+cot^(2)(x+y)=1-2x-x^(2), then (where, n in Z )

If tan^(-1)((1)/(y))=-pi+cot^(-1)y, where y=x^(2)-3x+2, then find the value of x

If y=tan^(-1) sqrt(x^(2)+y^(2))+cot^(-1) sqrt(x^(2)+y^(2)),"then " dy/dx=

If y=sqrt((1-cos2x)/(1+cos2x)), where 0

If the sum of all value of x satisfying the system of equations tan x + tan y+ tan x* tan y=5 sin (x +y)=4 cos x * cos y is (k pi )/2 , where x in (0, (pi)/(2)) then find the values of k .

Prove that (d)/(dx)(tan^(-1)x)=(1)/((1+x^(2))) , where x in R and y in [-(pi)/(2),(pi)/(2)] .