Home
Class 12
MATHS
The number of solution of sec^(2) theta ...

The number of solution of `sec^(2) theta + cosec^(2) theta+2 cosec^(2) theta=8, 0 le theta le pi//2` is

A

4

B

3

C

0

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sec^2 \theta + \csc^2 \theta + 2 \csc^2 \theta = 8 \) for \( 0 \leq \theta \leq \frac{\pi}{2} \), we will follow these steps: ### Step 1: Rewrite the equation in terms of sine and cosine The given equation can be rewritten using the definitions of secant and cosecant: \[ \sec^2 \theta = \frac{1}{\cos^2 \theta}, \quad \csc^2 \theta = \frac{1}{\sin^2 \theta} \] Thus, the equation becomes: \[ \frac{1}{\cos^2 \theta} + \frac{1}{\sin^2 \theta} + 2 \cdot \frac{1}{\sin^2 \theta} = 8 \] This simplifies to: \[ \frac{1}{\cos^2 \theta} + \frac{3}{\sin^2 \theta} = 8 \] ### Step 2: Combine the fractions To combine the fractions, we can find a common denominator: \[ \frac{\sin^2 \theta + 3 \cos^2 \theta}{\sin^2 \theta \cos^2 \theta} = 8 \] Cross-multiplying gives: \[ \sin^2 \theta + 3 \cos^2 \theta = 8 \sin^2 \theta \cos^2 \theta \] ### Step 3: Use the identity \( \sin^2 \theta + \cos^2 \theta = 1 \) We can substitute \( \cos^2 \theta = 1 - \sin^2 \theta \): \[ \sin^2 \theta + 3(1 - \sin^2 \theta) = 8 \sin^2 \theta (1 - \sin^2 \theta) \] This simplifies to: \[ \sin^2 \theta + 3 - 3 \sin^2 \theta = 8 \sin^2 \theta - 8 \sin^4 \theta \] \[ -2 \sin^2 \theta + 3 = 8 \sin^2 \theta - 8 \sin^4 \theta \] ### Step 4: Rearranging the equation Rearranging gives: \[ 8 \sin^4 \theta - 10 \sin^2 \theta + 3 = 0 \] Let \( x = \sin^2 \theta \). The equation becomes: \[ 8x^2 - 10x + 3 = 0 \] ### Step 5: Solve the quadratic equation Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{10 \pm \sqrt{(-10)^2 - 4 \cdot 8 \cdot 3}}{2 \cdot 8} \] \[ x = \frac{10 \pm \sqrt{100 - 96}}{16} \] \[ x = \frac{10 \pm 2}{16} \] This gives us two solutions: \[ x_1 = \frac{12}{16} = \frac{3}{4}, \quad x_2 = \frac{8}{16} = \frac{1}{2} \] ### Step 6: Find the values of \( \theta \) Since \( x = \sin^2 \theta \): 1. For \( \sin^2 \theta = \frac{3}{4} \): \[ \sin \theta = \frac{\sqrt{3}}{2} \implies \theta = \frac{\pi}{3} \] 2. For \( \sin^2 \theta = \frac{1}{2} \): \[ \sin \theta = \frac{1}{\sqrt{2}} \implies \theta = \frac{\pi}{4} \] ### Conclusion: Count the solutions Both angles \( \frac{\pi}{3} \) and \( \frac{\pi}{4} \) lie within the interval \( [0, \frac{\pi}{2}] \). Therefore, the number of solutions is: \[ \boxed{2} \]

To solve the equation \( \sec^2 \theta + \csc^2 \theta + 2 \csc^2 \theta = 8 \) for \( 0 \leq \theta \leq \frac{\pi}{2} \), we will follow these steps: ### Step 1: Rewrite the equation in terms of sine and cosine The given equation can be rewritten using the definitions of secant and cosecant: \[ \sec^2 \theta = \frac{1}{\cos^2 \theta}, \quad \csc^2 \theta = \frac{1}{\sin^2 \theta} \] Thus, the equation becomes: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise (Multiple)|31 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Exercise 4.9|6 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|34 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos

Similar Questions

Explore conceptually related problems

Solve , sec^(2)theta+cosec^(2)theta=8

The number of solution of sec^(2)theta+csc^(2)theta+2csc^(2)theta=8,0<=theta<=(pi)/(2) is 4(b)3(c)0(d)2

sec^2theta/(cosec^(2)theta) =

Prove that sec^(2) theta + cosec^(2) theta = sec^(2) theta * cosec^(2) theta

The value of 2 sec^(2) theta - sec^(4) theta - 2 cosec^(2)theta + cosec^(4) theta is

Prove that sec^(2) theta + "cosec"^(2) theta = sec^(2) theta "cosec"^(2) theta

CENGAGE-TRIGONOMETRIC EQUATIONS-Exercise (Single)
  1. General solution of tan theta+tan 4 theta+tan 7 theta=tan theta tan 4 ...

    Text Solution

    |

  2. The general solution of tan theta+tan 2 theta+tan 3 theta=0 is

    Text Solution

    |

  3. The number of solution of sec^(2) theta + cosec^(2) theta+2 cosec^(2) ...

    Text Solution

    |

  4. Which of the following is true for z=(3+2isintheta)(1-2sintheta)w h e ...

    Text Solution

    |

  5. The number of solution of sin x+sin 2x+sin 3x =cos x +cos 2x+cos 3x,...

    Text Solution

    |

  6. Number of solutions of the equation cos^(4) 2x+2 sin^(2) 2x =17 (cos...

    Text Solution

    |

  7. The number of values of theta in the interval (-pi/2,pi/2) satisfying ...

    Text Solution

    |

  8. The value of k if the equation 2cosx+cos2k x=3 has only one solution i...

    Text Solution

    |

  9. Number of solution(s) satisfying the equation 1/(sinx)-1/(sin2x)=2/(si...

    Text Solution

    |

  10. The number of roots of (1-tan theta) (1+sin 2 theta)=1+tan theta for t...

    Text Solution

    |

  11. If tan(A-B)=1a n dsec(A+B)=2/(sqrt(3)) , then the smallest positive va...

    Text Solution

    |

  12. If 3tan(theta-15^0)=tan(theta+15^0), then theta is equal to n in Z) ...

    Text Solution

    |

  13. If tan 3 theta + tan theta =2 tan 2 theta, then theta is equal to (n i...

    Text Solution

    |

  14. The solution of 4sin^2x+tan^2x+cos e c^2x+cot^2x-6=0i s(n in Z) npi+...

    Text Solution

    |

  15. sin 3 alpha = 4 sin alpha sin(x + alpha) sin(x-alpha)

    Text Solution

    |

  16. The general solution of 4 sin^4 x + cos^4x= 1 is

    Text Solution

    |

  17. For n in Z , the general solution of (sqrt(3)-1)sintheta+(sqrt(3)+1)c...

    Text Solution

    |

  18. The value of cosycos(pi/2-x)-cos(pi/2-y)cosx+sinycos(pi/2-x)+cosxsin(p...

    Text Solution

    |

  19. One of the general solutions of sqrt(3) cos theta -3 sin theta =4 sin ...

    Text Solution

    |

  20. The equation sin^4 x + cos^4 x + sin2x + alpha = 0 is solvable for

    Text Solution

    |