Home
Class 12
MATHS
If log(175)5x=log(343)7x, then the value...

If `log_(175)5x=log_(343)7x`, then the value of `log_(42)(x^(4)-2x^(2)+7)` is

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{175}(5x) = \log_{343}(7x) \), we will first rewrite the logarithms in terms of natural logarithms or common logarithms using the change of base formula. ### Step 1: Rewrite the logarithmic equations Using the change of base formula, we can express the logarithms as follows: \[ \log_{175}(5x) = \frac{\log(5x)}{\log(175)} \] \[ \log_{343}(7x) = \frac{\log(7x)}{\log(343)} \] Setting these two expressions equal gives us: \[ \frac{\log(5x)}{\log(175)} = \frac{\log(7x)}{\log(343)} \] ### Step 2: Cross-multiply Cross-multiplying gives us: \[ \log(5x) \cdot \log(343) = \log(7x) \cdot \log(175) \] ### Step 3: Expand the logarithms Using the property of logarithms \( \log(ab) = \log(a) + \log(b) \), we can expand both sides: \[ (\log(5) + \log(x)) \cdot \log(343) = (\log(7) + \log(x)) \cdot \log(175) \] ### Step 4: Distribute the logarithms Distributing gives us: \[ \log(5) \cdot \log(343) + \log(x) \cdot \log(343) = \log(7) \cdot \log(175) + \log(x) \cdot \log(175) \] ### Step 5: Rearranging the equation Now, we can rearrange the equation to isolate \( \log(x) \): \[ \log(x) \cdot \log(343) - \log(x) \cdot \log(175) = \log(7) \cdot \log(175) - \log(5) \cdot \log(343) \] Factoring out \( \log(x) \): \[ \log(x) \cdot (\log(343) - \log(175)) = \log(7) \cdot \log(175) - \log(5) \cdot \log(343) \] ### Step 6: Solve for \( \log(x) \) Now, we can solve for \( \log(x) \): \[ \log(x) = \frac{\log(7) \cdot \log(175) - \log(5) \cdot \log(343)}{\log(343) - \log(175)} \] ### Step 7: Calculate \( x \) To find \( x \), we need to exponentiate both sides: \[ x = 10^{\frac{\log(7) \cdot \log(175) - \log(5) \cdot \log(343)}{\log(343) - \log(175)}} \] ### Step 8: Find \( \log_{42}(x^4 - 2x^2 + 7) \) Now we need to find \( \log_{42}(x^4 - 2x^2 + 7) \). Notice that \( x^4 - 2x^2 + 7 \) can be rewritten as: \[ x^4 - 2x^2 + 1 + 6 = (x^2 - 1)^2 + 6 \] ### Step 9: Substitute \( x \) into the expression We can substitute the value of \( x \) into the expression \( (x^2 - 1)^2 + 6 \) and then calculate \( \log_{42}((x^2 - 1)^2 + 6) \). ### Final Step: Evaluate the logarithm Finally, we can evaluate \( \log_{42}((x^2 - 1)^2 + 6) \) to get the final answer.

To solve the equation \( \log_{175}(5x) = \log_{343}(7x) \), we will first rewrite the logarithms in terms of natural logarithms or common logarithms using the change of base formula. ### Step 1: Rewrite the logarithmic equations Using the change of base formula, we can express the logarithms as follows: \[ \log_{175}(5x) = \frac{\log(5x)}{\log(175)} \] ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise JEE Previous Year|5 Videos

Similar Questions

Explore conceptually related problems

log_(2)x=-log_((1)/(2))7, then the value of x is

If log_(y)x+log_(x)y=7, then the value of (log_(y)x)^(2)+(log_(x)y)^(2), is

If log_(7)x = 4/3 , then the value of x is:

If log_(y)x +log_(x)y = 7 , then the value of (log_(y)x)^(2) +(log_(x)y)^(2) , is

If log_(y)x+log_(x)y=7 then find the value of (log_(y)x)^(2)+(log_(x)y)^(2)

3(log_(7)x+log_(x)7)=10

If log_(2)log_(3)log_(4)log_(5)A=x , then the value of A is

If log_((x+y))(x - y) = 7 , then the value of log_((x^(2)-y^(2)))(x^(2)+2xy+y^(2)) is ______.

If 3^(((log_(3)7)^(x))=7^(((log_(7)3))^(x)), then the value of x will be