Home
Class 12
MATHS
The value of log10(sqrt(3-sqrt(5))+sqrt(...

The value of `log_10(sqrt(3-sqrt(5))+sqrt(3+sqrt(5)))` is

A

`1//2`

B

`1//4`

C

`3//2`

D

`3//4`

Text Solution

Verified by Experts

The correct Answer is:
A

`log_(10)((sqrt(6-2sqrt(5))+sqrt(6+2sqrt(5)))/(sqrt(2)))`
`log_(10)(((sqrt(5)-1)+(sqrt(5)+1))/(sqrt(2)))`
`=log_(10)((2sqrt(5))/(sqrt(2)))`
`log_(10)sqrt(10)=(1)/(2)`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise JEE Previous Year|5 Videos

Similar Questions

Explore conceptually related problems

Find the value of sqrt(3+sqrt(5))-sqrt(2+sqrt(3))

Find the value of sqrt(3+sqrt(5))-sqrt(2+sqrt(3))

The value of log_(2)(root(3)(2+sqrt(5))+root(3)(2-sqrt(5))) is equal to

The value of |{:(sqrt(13 )+ sqrt(3), 2sqrt(5),sqrt(5)),(sqrt(15) + sqrt(26),5,sqrt(10)),(3 + sqrt(65), sqrt(15),5):}|

The value of 2(log_(sqrt(2)+1)sqrt(3-2sqrt(2))+log_((2)/(sqrt(3+1)))(6sqrt(3)-10)) is

Find the value of 4^(5log_(4sqrt2)(3-sqrt6)-6log_8(sqrt3-sqrt2)) .

Find the value of (sqrt(sqrt(5)+sqrt(2))+sqrt(sqrt(5)-sqrt(2)))/(sqrt(sqrt(5)+sqrt(3)))

The value of (7+3 sqrt5)/(3+sqrt5)-(7-3 sqrt5)/(3-sqrt5) lies between: (7+3 sqrt5)/(3+sqrt5)-(7-3 sqrt5)/(3-sqrt5) का मान किसके बीच में होगा