Home
Class 12
MATHS
The value of log((9)/(4))((1)/(2sqrt(3))...

The value of `log_((9)/(4))((1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3)))))...oo)` is

A

`-2`

B

`-1`

C

`-1//2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the logarithm given by: \[ \log_{\frac{9}{4}} \left( \frac{1}{2\sqrt{3}} \sqrt{6 - \frac{1}{2\sqrt{3}} \sqrt{6 - \frac{1}{2\sqrt{3}} \sqrt{6 - \frac{1}{2\sqrt{3}} \cdots}}} \right) \] Let us denote the infinite nested radical by \( x \): \[ x = \frac{1}{2\sqrt{3}} \sqrt{6 - x} \] ### Step 1: Square both sides First, we square both sides to eliminate the square root: \[ x^2 = \left(\frac{1}{2\sqrt{3}}\right)^2 (6 - x) \] ### Step 2: Simplify the equation Calculating the left side, we have: \[ x^2 = \frac{1}{4 \cdot 3} (6 - x) = \frac{1}{12} (6 - x) \] Multiplying through by 12 to eliminate the fraction gives: \[ 12x^2 = 6 - x \] ### Step 3: Rearranging the equation Rearranging this equation leads to: \[ 12x^2 + x - 6 = 0 \] ### Step 4: Factor the quadratic equation Next, we can factor the quadratic equation. We need two numbers that multiply to \( 12 \times -6 = -72 \) and add to \( 1 \). The numbers \( 9 \) and \( -8 \) work: \[ 12x^2 + 9x - 8x - 6 = 0 \] Grouping gives: \[ 3x(4x + 3) - 2(4x + 3) = 0 \] Factoring out \( (4x + 3) \): \[ (4x + 3)(3x - 2) = 0 \] ### Step 5: Solve for \( x \) Setting each factor to zero gives: 1. \( 4x + 3 = 0 \) → \( x = -\frac{3}{4} \) (not valid since \( x \) must be positive) 2. \( 3x - 2 = 0 \) → \( x = \frac{2}{3} \) ### Step 6: Substitute back into the logarithm Now we substitute \( x = \frac{2}{3} \) back into the logarithm: \[ \log_{\frac{9}{4}} \left( \frac{2}{3} \right) \] ### Step 7: Use logarithm properties Using the property of logarithms, we can rewrite this as: \[ \log_{\frac{9}{4}} \left( \frac{2}{3} \right) = \log_{\frac{9}{4}} \left( \left(\frac{9}{4}\right)^{-\frac{1}{2}} \right) \] This simplifies to: \[ -\frac{1}{2} \log_{\frac{9}{4}} \left( \frac{9}{4} \right) = -\frac{1}{2} \cdot 1 = -\frac{1}{2} \] ### Final Answer Thus, the value of the logarithm is: \[ \boxed{-\frac{1}{2}} \]

To solve the problem, we need to evaluate the logarithm given by: \[ \log_{\frac{9}{4}} \left( \frac{1}{2\sqrt{3}} \sqrt{6 - \frac{1}{2\sqrt{3}} \sqrt{6 - \frac{1}{2\sqrt{3}} \sqrt{6 - \frac{1}{2\sqrt{3}} \cdots}}} \right) \] Let us denote the infinite nested radical by \( x \): ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise JEE Previous Year|5 Videos

Similar Questions

Explore conceptually related problems

The value of 6+log_((3)/(2))((1)/(3sqrt(2))sqrt(4-(1)/(3sqrt(2))sqrt(4-...))

The value of 6+log_((3)/(2))((1)/(3sqrt(2))sqrt(4-(1)/(3sqrt(2))sqrt(4-(1)/(3sqrt(2))sqrt(4-(1)/(3sqrt(2))...cdots))))

6 + log_(1/4) (1/sqrt(2))[sqrt(1-(1/sqrt(2))sqrt(1-(1/sqrt(2))sqrt(1-(1/sqrt(2)))]

(2)/(sqrt(5)+sqrt(3))-(3)/(sqrt(6)+sqrt(3))+(1)/(sqrt(6)+sqrt(5))=?

(3-sqrt(6))/(3+2sqrt(6))=a sqrt(6)-b

(3sqrt(2))/(sqrt(6)-sqrt(3))+(2sqrt(3))/(sqrt(6)+2)-(4sqrt(3))/(sqrt(6)-sqrt(2))

(3sqrt(2))/(sqrt(3)+sqrt(6))-(4sqrt(3))/(sqrt(6)+sqrt(2))+(sqrt(6))/(sqrt(3)+sqrt(2))