Home
Class 12
MATHS
Given that log2 3 = a, log3 5=b,log7 2=...

Given that `log_2 3 = a, log_3 5=b,log_7 2=c`,then the value of `log_(140) 63` is equal to

A

`(2+ac)/(2c+1+abc)`

B

`(1+2ac)/(c+2+abc)`

C

`(1+2ac)/(2c+1+abc)`

D

`(2+ac)/(c+2+abc)`

Text Solution

Verified by Experts

The correct Answer is:
C

`log_(140)63=(log_(7)7+2log_(7)3)/(2log_(7)2+log_(7)7+log_(7)5)`
`=(1+2ac)/(2c+1+abc)`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise JEE Previous Year|5 Videos

Similar Questions

Explore conceptually related problems

If log_(3)2=a,log_(3)5=b, then value of log_(3)180 is

If log_(2)(7)=a and log_(3)(2)=b, then the value of log_(14)(84) is

If log_(2)log_(3)log_(4)log_(5)A=x , then the value of A is

If log_(2)3=a,log_(3)5=b,log_(7)2=c find log_(140)63 in terms of a,b,c.

Given that log_(2)(3)=a,log_(3)(5)=b,log_(7)(2)=c express the logrithm of the number 63 to the base 140 in terms of a,b o* c.

If log_(sqrt(3))5=a and log_(sqrt(3))2=b then value of log_(sqrt(3))300 is

The value of log_4[|log_2{log_2(log_3)81)}] is equal to

log_3 2 ,log_3(2^x-5) , log_3(2^x-7/2) are in A.P. then the value of x =?