Home
Class 12
MATHS
let N =(log(3) 135/log(15) 3) - (log(3) ...

let `N =(log_(3) 135/log_(15) 3) - (log_(3) 5/log_(405) 3)`

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
C

`(log_(3)135)/(log_(15)3)-(log_(3)5)/(log_(405)3)`
`=(3+log_(3)5)(1+log_(3)5)-log_(3)5 log_(3)405`
`= (3+log_(3)5)(1+log_(3)5)-log_(3)5 log_(3)(81xx5)`
`=(3+log_(3)5)(1+log_(3)5)-log_(3)5(4+log_(3)5)`
= 3
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise JEE Previous Year|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate (log_(3)135)/(log_(15)3)-(log_(3)5)/(log_(405)3)

Evaluate :((log_(3)(135))/(log_(15)(3)))-((log_(3)(5))/(log_(405)(3)))

Let N=(log_(3)135)/(log_(3)135)-(log_(3)5)/(log_(3)5). Then N is a.A natural number b.a prime number c. an even integer d.an odd integer

The value of (log_(3)54)/(log_(486)3) - (log_(3)1458)/(log_(18)3) is:

7^(log_(3)5)+3^(log_(5)7)-5^(log_(3)7)-7^(log_(5)3)

The value of (log_(3) 5 xx log_(25) 27 xx log_(49) 7)/(log_(81)3) is

Prove that: (log_(9)11)/(log_(5)3)=(log_(3)11)/(log_(sqrt(5))3)