Home
Class 12
MATHS
If log(a)b=2, log(b)c=2, and log(3) c= ...

If ` log_(a)b=2, log_(b)c=2, and log_(3) c= 3 + log_(3)` a,then the value of c/(ab)is ________.

A

1

B

3

C

9

D

27

Text Solution

Verified by Experts

The correct Answer is:
B

`log_(3)C=3+log_(3)a`
`rArr "log"_(3)(c )/(a)=3`
`rArr c = 27 a` ….(1)
`log_(a)b=2` and `log_(b)c=2`
`rArr log_(a)b.log_(b)c=4`
`rArr log_(a)c=4`
`rArr c = a^(4)` ….(2)
From (1) and (2), we get
a = 3 and c = 81
`therefore` from `log_(a)b = 2`, we get `b = a^(2) = 9`
`rArr (c )/(ab)=3`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise JEE Previous Year|5 Videos

Similar Questions

Explore conceptually related problems

log_(a)b=2,log_(b)c=2 and log_(3)c=3+log_(3)a then (a+b+c)=?

If log_(a)b=1/2,log_(b)c=1/3" and "log_(c)a=(K)/(5) , then the value of K is

If log_(a)b=2,log_(b)c=2 and log_(3)c=log_(3)a+3, then (a+b+c) is equal to 93(b)102(c)90(d)243

if (a+log_(4)3)/(a+log_(2)3)=(a+log_(8)3)/(a+log_(4)3)=b then find the value of b

log_(a)b = log_(b)c = log_(c)a, then a, b and c are such that

If x=log_(k)b=log_(b)c=(1)/(2)log_(c)d, then log_(k)d is equal to

If log_(2)3=a,log_(3)5=b,log_(7)2=c find log_(140)63 in terms of a,b,c.