Home
Class 12
MATHS
The value of 6^(log10 40)*5^(log10 36) i...

The value of `6^(log_10 40)*5^(log_10 36)` is

A

200

B

216

C

432

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

We have `N = 6^(log_(10)40).5^(log_(10)36)`
`therefore log_(10)N=log_(10)40 log_(10)6+log_(10)6+log_(10)36 log_(10)5`
`=log_(10)6[log_(10)40+log_(10)25]`
`= log_(10)6[log_(10)1000]`
`= log_(10)(6)^(3)`
`therefore N = 6^(3)=216`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise JEE Previous Year|5 Videos

Similar Questions

Explore conceptually related problems

The number N=6^(log_(10)40)*5^(log_(10)36) is a natural number,Then sum of digits of N is :

The value of (log_(10)2)^(3)+log_(10)8 * log_(10) 5 + (log_(10)5)^(3) is _______.

The value of (log_(10)2)^(3)+log_(10)8log_(10)5+(log_(10)5)^(3) is

The value of (3 + log_(10) (10)^(2))/(log_(5)5) is _______

If log_(10)(sin(x+pi/4))=(log_(10)6-1)/2 , the value of log_(10)(sinx)+log_(10)(cosx) is

the value of e^(log_(10)tan1^(@)+log_(10)tan2^(@)+log_(10)tan3^(@)...+log_(10)tan89^(@))