Home
Class 12
MATHS
Solve : log(3)x . log(4)x.log(5)x=log(3)...

Solve : `log_(3)x . log_(4)x.log_(5)x=log_(3)x.log_(4)x+log_(4)x.log_(5)+log_(5)x.log_(3)x`.

Text Solution

Verified by Experts

The correct Answer is:
60

`log_(3)x.log_(4)x.log_(5)x=log_(3)x.log_(4)x+log_(4)x.log_(5)x+log_(5)x.log_(3)x.`
Let `log_(x)3=p, log_(x)4=q, log_(x)5=4`
`rArr (1)/(pqr)=(1)/(pq)+(1)/(qr)=(1)/(pr)`
`rArr p+q+r=1`
`rArr log_(x)3+log_(x)4+log_(x)5=1`
`rArr log_(x)60=1`
`rArr x = 60`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise JEE Previous Year|5 Videos

Similar Questions

Explore conceptually related problems

Find the square of the sum of the roots of the equation log_(3)x.log_(4)x.log_(5)x=log_(3)x.log_(4)x+log_(4)x. log_(5)x+log_(5)x.log_(3)x

The set of all solutions of the equation log_(3)x log_(4)x log_(5)x=log_(3)x log_(4)x+log_(4)x log_(5)x+log_(5)x+log_(3)x is

The set of all solutions of the equation log_(3)x log_(4)x log_(3)x=log_(3)x log_(4)x+log_(4)x log_(5)x+log_(5)x log_(3)x is

FInd the square of the sum of the roots of the equation log_3x.log_4x.log_5x=log_3x.log_4x+ log_4x.log_5x +log_5x.log_3x

The sum of solutions of the equation log_(2)x log_(4)x log_(6)x=log_(2)x*log_(4)x+log_(4)x log_(6)x+log_(6)x*log_(2)x is equal to

x=log_(5)3+log_(7)5+log_(9)7

Solve :log_(4)(log_(3)(log_(2)x))=0

Find the square of the sum of the roots of the equation log_(3)x*log_(4)x*log_(5)x=log_(3)x*log_(4)x+log_(5)x*log_(3)x

Find the square of the sum of the roots of the equation log_3x*log_4x*log_5x=log_3x*log_4x+log_4x*log_5x+log_3x*log_5x