Home
Class 12
MATHS
The value of x satisfying 5^logx-3^(lo...

The value of x satisfying `5^logx-3^(logx-1)=3^(logx+1)-5^(logx - 1)` , where the base of logarithm is 10 is not : 67 divisible by

Text Solution

Verified by Experts

The correct Answer is:
100

`5^(log x)-3^(log x-1)=3^(log x+1)-5^(log x-1)`
`rArr 5^(log x)-3^(log x-1)=3^(log x+1)`
`rArr 5^(log x)+5^(log x-1)=3^(log x+1)+3^(log x-1)`
`rArr 5^(log x)+(5^(log x))/(5)=3.3^(log x)+(3^(log x))/(3)`
`rArr (6.5^(log x))/(5)=(10.3^(log x))/(3)`
`rArr ((3)/(5))^(log x)=((3)/(5))^(2)`
`rArr log_(10)x=2`
`rArr x =100`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise JEE Previous Year|5 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)(logx)

Tho solution of the equation 7^(logx)-5^(logx+1)=3.5^(log-x1)-13.7 ^(logx-1)is

The value of int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx is equal to

int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx

int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx

int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx

y=x^(logx)+(logx)^(x)

int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx=