Home
Class 12
MATHS
Solve: logaxloga(xyz)=48; logayloga(xy...

Solve: `log_axlog_a(xyz)=48`; `log_aylog_a(xyz)=12`; `log_azlog_a(xyz)=84`

Text Solution

Verified by Experts

The correct Answer is:
`x=a^(4),y=a,z=a^(7)`

Adding given equations
`log_(a)(xyz)[log_(a)x +log_(a)y+log_(a)z]=144`
`rArr log_(a)(xyz)=(144)^(1//2)=12`
`rArr xyz = a^(12)`
From `log_(a)x log_(a)(xyz)=48`
`rArr (log_(a)x)(12)=48`
`rArr log_(a)x=4`
`rArr =a^(4)`
Similary y = a and `z=a^(7)`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise JEE Previous Year|5 Videos

Similar Questions

Explore conceptually related problems

Solve: log_(a)x log_(a)(xyz)=48log_(a)y log_(a)(xyz)=12;log_(a)z log_(a)(xyz)=84

Solve the system of equations : log_(a)(x)log_(a)(xyz)=48log_(a)(y)log_(a)(xyz)=12log_(a)(z)log_(a)(xyz)=84,quad a>0,a!=1

Solve the system of equations: (log)_(a)x(log)_(a)(xyz)=48(log)_(a)y log_(a)(xyz)=12,backslash a>0,backslash a!=1(log)_(a)z log_(a)(xyz)=84

(1)/(log_(xy)(xyz))+(1)/(log_(yz)(xyz))+(1)/(log_(zx)(xyz))=

det[[log_(x)xyz,log_(x)y,log_(x)zlog_(y)xyz,1,log_(y)zlog_(z)xyz,log_(z)y,1]]=0

If x=log_(b)a,y=log_(c)b,z=log_(a)c then xyz=

Let x , y and z are real numbers satisfying the system of equations log_(2)(xyz-3+log_(5)x)=5 log_(3)(xyz-3+log_(5)y)=4 log_(4)(xyz-3+log_(5)z)=4 then the value of |log_(5)x|+|log_(5)y|+|log_(5)z| is

Evaluate (1)/(log_(xy)(xyz))+(1)/(log_(yz)(xyz))+(1)/(log_(zx)(xyz))

If log_(xyz)x + log_(xyz)y + log_(xyz)z= log_(10)p , then p = ______.