Home
Class 12
MATHS
The sum of all the values of a satisfyin...

The sum of all the values of a satisfying the equation `|[log_10 a,-1],[log_10(a-1),2]|=log_10 a+log_10 2`

A

0

B

1

C

2

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

`2log_(10)a+log_(10)(a-1)=log_(10)2a`
`therefore a^(2)(a-1)=2a`
`therefore a^(2)-a-2=0`
`rArr (a-2)(a+1)=0`
`rArr a=2,-1` (not possible)
`therefore a = 2`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise JEE Previous Year|5 Videos

Similar Questions

Explore conceptually related problems

The sum of all the values of a satisfying the equation a,-1det[[log_(10)(a-1),2]]=log_(10)a+log_(10)2

The sum of all possible values of x satisfying the equation 6log_(x-1)10+log_(10)(x-1)=5

The value of x satisfying the equation 2log_(10)x - log_(10) (2x-75) = 2 is

The value of x satisfying the inequation x^(1/(log10^x)).log_10xlt1 , is

The number of real values of x satisfying the equation log_(10) sqrt(1+x)+3log_(10) sqrt(1-x)=2+log_(10) sqrt(1-x^(2)) is :

The value of x satisfying the equation 2^(log_2e^(In^5log 7^(log_10^(log_10(8x-3)))

The set of all real numbers satisfying the inequation x^((log_(10) x)^(2)-3(log10 x)+1) gt 1000 , is

Find the value of x which satisfies the relation log_(10)3+log_(10)(4x+1)=log_(10)(x+1)+1

Find the sum of all possible values of x satisfying simultaneous the equations log^(2)x3log x=log(x^(2))4 and log^(2)(100x)+log^(2)(10x)=14+log((1)/(x)).[ Note : Assume base of logarithm is 10.1]

The sum of all the solutions to the equations 2log_(10)x-log_(10)(2x-75)=2