Home
Class 12
MATHS
98. The value of x satisfying the equati...

98. The value of x satisfying the equation `((sqrtpi)^(log_pi(x))).((sqrtpi)^(log_(pi^2)(x))).((sqrtpi).^(log_(pi^4)(x))).((sqrtpi)^(log_(pi^8)(x)))...oo=3` is equal to

A

`sqrt(pi)`

B

`pi`

C

3

D

`(1)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
C

We have
`(sqrt(pi))^(log_(pi)x).(sqrt(pi))^(log_(pi)4x).(sqrt(pi))^(log_(pi)8x)`
`rArr (sqrt(pi))^((1+(1)/(2)+(1)/(4)+(1)/(8)+…oo)log_(pi)x)=3`
`rArr (sqrt(pi))^(2log_(pi)x)=3`
`rArr pi^(log_(pi)x=3`
`rArr x = 3`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise JEE Previous Year|5 Videos

Similar Questions

Explore conceptually related problems

The value of x satisfying the equation 2log_(3)x+8=3.x log_(9)4

The value of x satisfying the equation 2^(log3x)+8=3*x^(log_(9)4), is

The value of ' x 'satisfying the equation,4^(log_(9)3)+9^(log_(2)4)=10^(log_(x)83) is

The value 'x' satisfying the equation, 4^(log_(g)3)+9^(log_(2)4)=10^(log_(x)83)is ____

The number of values of x satisfying the equation log_(2)(log_(3)(log_(2)x)))>=sqrt(8-x)+sqrt(x-8) is :

2.The value of x satisfying the equation log_(cos x)sin x=1 , where 0< x < (pi)/2 is

The possible value of x satisfying the equation log_(2)(x^(2)-x)log_(2)((x-1)/(x))+(log_(2)x)^(2)=4 is

The value of x, satisfying the equation log_(cos x ) sin x =1 , where 0 lt x lt (pi)/(2) , is

The set of values of x in (0,pi) saistying the equation is 1+log_(2)sin x+log_(2)sin3x>=0 is

The smallest positive x satisfying the equation log_(cos x)sin x+log_(sin x)cos x=2 is (pi)/(2)(b)(pi)/(3)(c)(pi)/(4)(d)(pi)/(6)