Home
Class 12
MATHS
If a gt 1, x gt 0 and 2^(log(a)(2x))=5^(...

If `a gt 1, x gt 0` and `2^(log_(a)(2x))=5^(log_(a)(5x))`, then x is equal to

A

`(1)/(10)`

B

`(1)/(5)`

C

`(1)/(2)`

D

1

Text Solution

Verified by Experts

The correct Answer is:
A

We having `2^(log_(a)(2x))=5^(log_(a)(5x))`
Taking log on both sides, we get
`log_(a)(2x).log 2=log_(a)(5x).log 5`
`rArr ((log 2+log x))/(log a)log 2=((log 5+ log x))/(log a)log 5`
`rArr (log 2)^(2)+log x log 2=(log 5)^(2)+(log x)log 5`
`rArr log x(log 2-log 5)=(log 5)^(2)-(log 2)^(2)`
`rArr -log x=log 5+log 2=log 10`
`rArr x=(1)/(10)`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise JEE Previous Year|5 Videos

Similar Questions

Explore conceptually related problems

If log_(x)(4x^(log_(5)(x))+5)=2log_(5)x, then x equals to

If log_(10)5+log_(10)(5x+1)=log_(10)(x+5)+1, then x is equal to

x^(log_(5^(x))) gt 5 then x may belongs to

If log_(0,2)(x-1)>log_(0.04)(x+5) then

underset(x to 1)lim (log_(2) 2x)^(log_ x^( 5)) is equal to

If x_(1) and x_(2) are the solutions of the equation 5^((log_(5)x)^(2))+x^(log_(5)x)=1250, then x_(1)*x_(2) is equal to

If a gt 0 , 2 log_(x) a + log_(ax) a + 3 log_(a^(2)x) a = 0 then x =

The solution of the equation 5^(log_(a)x)+5x^(log_(a)5)=3, a gt0 , is