Home
Class 12
MATHS
Solve log(6) 9-log(9) 27 + log(8)x = log...

Solve `log_(6) 9-log_(9) 27 + log_(8)x = log_(64) x - log_(6) 4`..

A

`1//2`

B

`1//4`

C

`1//8`

D

`1//16`

Text Solution

Verified by Experts

The correct Answer is:
C

`log_(6)9-log_(9)27)+log_(8)x=log_(64)x-log_(6)4`
`rArr (log_(9)9+log_(6)4)-(3)/(2)log_(3)3=(log_(8)x)/(2)-log_(8)x`
`rArr 2-(3)/(2)=-(1)/(2)log_(8)x`
`rArr x=(1)/(8)`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise JEE Previous Year|5 Videos

Similar Questions

Explore conceptually related problems

Solve (log_(3)x)(log_(5)9)- log_x 25 + log_(3) 2 = log_(3) 54 .

Solve for x: log_(4) log_(3) log_(2) x = 0 .

Solve :6(log_(x)2-log_(4)x)+7=0

Solve: log_(9)x+log_(x)9+log_(x)x+log_(9)9=0

Solve log_(3)x+log_(9)x+log_(27)x=(11)/(2)

Solve : log_(3)x . log_(4)x.log_(5)x=log_(3)x.log_(4)x+log_(4)x.log_(5)+log_(5)x.log_(3)x .

Evaluate: log_(9)27 - log_(27)9

The sum of solutions of the equation log_(2)x log_(4)x log_(6)x=log_(2)x*log_(4)x+log_(4)x log_(6)x+log_(6)x*log_(2)x is equal to