Home
Class 12
MATHS
If log(2)(log(2)(log(2)x))=2, then the n...

If `log_(2)(log_(2)(log_(2)x))=2`, then the number of digits in x, is `(log_(10)2=0.3010)`

A

7

B

6

C

5

D

4

Text Solution

Verified by Experts

The correct Answer is:
C

`log_(2)(log_(2)(log_(2)x))=2`
`rArr log_(2)(log_(2)x)=4`
`rArr log_(2)x=16`
`rArr x=2^(16)`
`therefore log_(10)x=16log_(10)2=16xx0.3010=4.8160`
`therefore` Number of digits = 5
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise JEE Previous Year|5 Videos

Similar Questions

Explore conceptually related problems

Number of digits in 2^(6730) is (log_(10)2=0.3010)

The number of digits in 20^(301) (given log_(10) 2 = 0.3010 ) is

If x satisfies the equation log_(125)x^(3)3sqrt(log_(25)x^(2))=4, then find the number of digits in x.[Use:log2=0.3010]

(log_(2)x)^(2)+4(log_(2)x)-1=0

If log_(10)2= 0.3010 , then the number of digits in 16^(12) is

if log_(10)2= 0.3010 , then find the number of digits in (16)^(10)

If log_(10)2 = 0.3010, then find the number of digits in (64)^(10) .