Home
Class 12
MATHS
If 15 sin^(4)alpha+10cos^(4)alpha=6, the...

If `15 sin^(4)alpha+10cos^(4)alpha=6`, then the value of `8 cosec^(6)alpha+27 sec^(6)alpha` is

A

150

B

175

C

225

D

250

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the equation given: **Given:** \[ 15 \sin^4 \alpha + 10 \cos^4 \alpha = 6 \] We want to find the value of: \[ 8 \csc^6 \alpha + 27 \sec^6 \alpha \] ### Step 1: Rewrite the equation in terms of \(\cos^4 \alpha\) Divide the entire equation by \(\cos^4 \alpha\): \[ \frac{15 \sin^4 \alpha}{\cos^4 \alpha} + 10 = \frac{6}{\cos^4 \alpha} \] Using the identity \(\sin^2 \alpha = 1 - \cos^2 \alpha\), we can express \(\sin^4 \alpha\) as: \[ \sin^4 \alpha = (1 - \cos^2 \alpha)^2 = 1 - 2\cos^2 \alpha + \cos^4 \alpha \] Thus, we have: \[ \frac{15(1 - 2\cos^2 \alpha + \cos^4 \alpha)}{\cos^4 \alpha} + 10 = \frac{6}{\cos^4 \alpha} \] ### Step 2: Simplify the equation This simplifies to: \[ 15 \left(\frac{1}{\cos^4 \alpha} - \frac{2}{\cos^2 \alpha} + 1\right) + 10 = \frac{6}{\cos^4 \alpha} \] Multiplying through by \(\cos^4 \alpha\) to eliminate the denominators: \[ 15(1 - 2\cos^2 \alpha + \cos^4 \alpha) + 10\cos^4 \alpha = 6 \] This gives: \[ 15 - 30\cos^2 \alpha + 25\cos^4 \alpha = 6 \] ### Step 3: Rearranging the equation Rearranging yields: \[ 25\cos^4 \alpha - 30\cos^2 \alpha + 9 = 0 \] Let \(x = \cos^2 \alpha\). The equation becomes: \[ 25x^2 - 30x + 9 = 0 \] ### Step 4: Solve the quadratic equation Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \(a = 25\), \(b = -30\), and \(c = 9\): \[ x = \frac{30 \pm \sqrt{(-30)^2 - 4 \cdot 25 \cdot 9}}{2 \cdot 25} \] \[ x = \frac{30 \pm \sqrt{900 - 900}}{50} = \frac{30}{50} = \frac{3}{5} \] Thus, \[ \cos^2 \alpha = \frac{3}{5} \] ### Step 5: Find \(\sin^2 \alpha\) Using \(\sin^2 \alpha + \cos^2 \alpha = 1\): \[ \sin^2 \alpha = 1 - \cos^2 \alpha = 1 - \frac{3}{5} = \frac{2}{5} \] ### Step 6: Calculate \(\csc^6 \alpha\) and \(\sec^6 \alpha\) Now we can calculate: \[ \csc^2 \alpha = \frac{1}{\sin^2 \alpha} = \frac{5}{2} \quad \Rightarrow \quad \csc^6 \alpha = \left(\frac{5}{2}\right)^3 = \frac{125}{8} \] \[ \sec^2 \alpha = \frac{1}{\cos^2 \alpha} = \frac{5}{3} \quad \Rightarrow \quad \sec^6 \alpha = \left(\frac{5}{3}\right)^3 = \frac{125}{27} \] ### Step 7: Substitute into the expression Now substituting into the expression: \[ 8 \csc^6 \alpha + 27 \sec^6 \alpha = 8 \cdot \frac{125}{8} + 27 \cdot \frac{125}{27} \] \[ = 125 + 125 = 250 \] ### Final Answer: Thus, the value of \(8 \csc^6 \alpha + 27 \sec^6 \alpha\) is: \[ \boxed{250} \]

To solve the problem step by step, we start with the equation given: **Given:** \[ 15 \sin^4 \alpha + 10 \cos^4 \alpha = 6 \] We want to find the value of: \[ 8 \csc^6 \alpha + 27 \sec^6 \alpha \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise JEE Advanced Previous Year|2 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If 10sin^(4)alpha+15cos^(4)alpha=6, then find the value of 27cos ec^(6)alpha+8sec^(6)alpha.

If 10sin^(4)alpha+15cos^(4)alpha=6, find the value of 27cos ec^(6)alpha+8sec^(6)alpha

If 10sin^(4)alpha+15cos^(4)alpha=6 then the value of 9cos ec^(4)alpha+8sec^(4)alpha-75 is

If 15sin^4alpha+10cos^4alpha=6 then find the value of 8cosec^6alpha+27sec^6alpha .

If 10sin^(4)alpha+15cos^(4)alpha=6 and the value of 9"cosec"^(4)alpha+8 sec^(4) alpha is S, then find the value of (S)/(25) .

If alpha satisfies 15 sin^(4)alpha + 10 cos^(4)alpha=6 , then find the value of 27 sin^(8)alpha + 8 cos^(8) alpha

If sin^(2)alpha=cos^(2)alpha , then the value of (cot^(6)alpha-cot^(2)alpha) is

If 15 sin^(4) alpha+10 cos^(4) alpha=6 , some alpha in R , then the value of 27 sec^(6) alpha+8 cosec^(6) alpha is equal to

If sin^(2)alpha+ sin alpha=1 , then the value of cos^(4) alpha+ cos^(2) alpha is ________

CENGAGE-TRIGONOMETRIC FUNCTIONS -SINGLE CORRECT ANSWER TYPE
  1. If theta in (pi//4, pi//2) and sum(n=1)^(oo)(1)/(tan^(n)theta)=sin the...

    Text Solution

    |

  2. The value of (tan^(2)20^(@)-sin^(2)20^(@))/(tan^(2)20^(@).sin^(2)20^(@...

    Text Solution

    |

  3. If 15 sin^(4)alpha+10cos^(4)alpha=6, then the value of 8 cosec^(6)alph...

    Text Solution

    |

  4. In DeltaABC, if sin A + sin B + sin C= 1 + sqrt2 and cos A+cos B+cos...

    Text Solution

    |

  5. If (sin^(2)x-2cos^(2)x+1)/(sin^(2)x+2cos^(2)x-1)=4, then the value of ...

    Text Solution

    |

  6. If sintheta,tantheta,costheta are in G.P. then 4sin^2theta-3sin^4theta...

    Text Solution

    |

  7. If tantheta-cottheta=aandsintheta+costheta=b(b^2-1)^2(a^2+4) is equal...

    Text Solution

    |

  8. The least value of 18 sin^(2)theta+2 cosec^(2)theta-3 is

    Text Solution

    |

  9. If tan^2 alpha tan^2 beta + tan^2 beta tan^2 gamma + tan^2 gamma tan^2...

    Text Solution

    |

  10. If x,y,z be all positive acute angles then the least value of tanx(cot...

    Text Solution

    |

  11. Three circles each of radius 1, touch one another externally and they ...

    Text Solution

    |

  12. If (cos alpha)/(cos A)+(sin alpha)/(sin A)+(sin beta)/(sin A)=1, where...

    Text Solution

    |

  13. Consider angles alpha = (2n+(1)/(2))pi pm A and beta = m pi +(-1)^(m)(...

    Text Solution

    |

  14. Which of the following is true ?

    Text Solution

    |

  15. If the angle A of a triangle ABC is given by the equation 5 cos A + 3 ...

    Text Solution

    |

  16. Which of the following is greatest ?

    Text Solution

    |

  17. The number of value/values of x for which sin y=x^(2)-2x si possible i...

    Text Solution

    |

  18. Which of the following is not correct ?

    Text Solution

    |

  19. If sin^(4)alpha+cos^(4)beta+2=4 sin alpha cos beta, 0 le alpha, (pi)/(...

    Text Solution

    |

  20. Number of ordered pairs (a, x) satisfying the equation sec^2(a+2)x+a^2...

    Text Solution

    |