Home
Class 12
MATHS
Given a triangle DeltaABC such that si...

Given a triangle `DeltaABC` such that `sin^2 A + sin^2C = 1001.sin^2B`. Then the value of `(2(tanA+tanC)*tan^2B)/(tanA+tanB+tanC)` is

A

`(1)/(2000)`

B

`(1)/(1000)`

C

`(1)/(500)`

D

`(1)/(250)`

Text Solution

Verified by Experts

The correct Answer is:
D

`sin^(2)A+sin^(2)C=1001sin^(2)B`
`rArr a^(2)+c^(2)=1001b^(2)` (using sine rule)
Now, `(2(tan A+ tan C).tan^(2)B)/(tan A + tan B + tan C)`
`=(2(tan A + tan C).tan^(2)B)/(tan A.tan B. tan C)`
`=2((cot A + cot C)/(cot B))`
`=(2(cos A sin C + sin A cos C))/(sin A. sin C. cos B) sin B`
`=(2 sin (pi-B).sin B)/(sin A sin C cos B)`
`=(2 sin^(2)B)/(sin A sin C cos B)`
`=(2xx2b^(2))/(2ab.cos B)`
`=(2xx2b^(2))/(a^(2)+c^(2)-b^(2))=(2xx2b^(2))/(1000b^(2))=(1)/(250)`
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE|Exercise Multiple Correct Answers Type|13 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE|Exercise Comprehension Type|6 Videos
  • SETS AND RELATIONS

    CENGAGE|Exercise Question Bank|15 Videos
  • STATISTICS

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

Given a triangle Delta ABC such that sin^(2)A+sin^(2)C=1001.sin^(2)B .Then the value of (2(tan A+tan C)*tan^(2)B)/(tan A+tan B+tan C) is

In DeltaABC , tanA+tanB+tanC=tanAtanBtanC

Find the value of tanA+tanB+tanC , if A+B+C=pi :

In a DeltaABC , prove that : tanA+tanB+tanC= tanA tanB tanC

If A+B+C=180^(@) , then (tanA+tanB+tanC)/(tanAtanBtanC)=?

In any triangle ABC , (tanA/2-tanB/2)/(tanA/2+tanB/2) is equal to

In a triangle ABC, tanA + tanB + tanC = 9. If tan^2 A+ tan^2 B + tan^2 C= k then the least value of k^(9/7) is

In a triangle ABC tanA+tanB+tanC>=P then P=

12. lf in triangle ABC ,cos theta (sinB + sinC) = sinA, then (A) cot^2theta/2=tanB/2tanC/2 (B) tan^2 theta/2=tanB/2+tanC/2 (C) tan^2 theta/2=tanB/2tanC/2D) costhetacos(B-C)/2-cos(B+C)/2=0

In a Delta ABC , if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin C= (3+ sqrt3)/(8) , then The value of tan A tan B tanC is