Home
Class 12
MATHS
DeltaABC has different side lengths a,b,...

`DeltaABC` has different side lengths a,b,c. If `a^(2),b^(2),c^(2)` as sides form another `DeltaPQR`, then `DeltaABC` will always be

A

acute angled triangle only

B

obtuse angled triangle only

C

sometimes acute or sometimes obtuse depending on values of a,b nd c

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

Let `a gt b gt c`, given that `b+c gt a` and `b^(2)+c^(2)gt a^(2)`
`therefore b^(2)+c^(2)-a^(2)gt 0`
`therefore 2bc cos A gt 0`
`therefore cos A gt 0`
`therefore A` is acute angle.
Similarly `cos B gt 0, cos C gt 0`
So, `Delta ABC` is an acute angled triangle.
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE|Exercise Multiple Correct Answers Type|13 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE|Exercise Comprehension Type|6 Videos
  • SETS AND RELATIONS

    CENGAGE|Exercise Question Bank|15 Videos
  • STATISTICS

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

If cot ""A/2 =(b+c)/(a), then DeltaABC is

In a DeltaABC," if " a^(2)sinB=b^(2)+c^(2) , then :

If in a DeltaABC, sin A: sin C = sin (A - B): sin (B-C), then a^(2), b^(2), c^(2) are in

If a, b, c denote the sides of a DeltaABC such that a^(2)+b^(2)-ab=c^(2) , then

If in a DeltaABC,a^(2)cos^(2)A-b^(2)-c^(2)=0 , then

If in a DeltaABC,a^(2)cos^(2)A=b^(2)+c^(2) , then

In DeltaABC if (sinA)/(sinC)=(sin(A-B))/(sin(B-C)) , then a^(2), b^(2), c^(2) are in :