Home
Class 12
MATHS
In a triangle ABC, D is a point on BC su...

In a triangle ABC, D is a point on BC such that AD is the internal bisector of `angle A`. Let `angle B = 2 angle C` and CD = AB. Then `angle A` is

A

`18^(@)`

B

`36^(@)`

C

`54^(@)`

D

`72^(@)`

Text Solution

Verified by Experts

The correct Answer is:
D


Since `angle B=2 angle C`
sin B = sin 2C
`rArr sin B = 2 sin C cos C`
`rarr b(2ab)=2c(a^(2)+b^(2)-c^(2))`
`rarr ab^(2)=ca^(2)+cb^(2)-c^(3)`
`rArr ab^(2)-cb^(2)=ca^(2)-c^(3)`
`rArr b^(2)(a-c)=c(a^(2)-c^(2))`
`rArr b^(2)=c(a+c)`
Now CD = c and BD = a-c
Also D is angle bisector
`therefore (a-c)/(c )=(c )/(b)`
`rArr c^(2)=ab-bc`
`rArr b^(2)-ac=ab-bc` (using `b^(2)=c(a+c)`)
`rArr b^(2)+bc=ac+ab`
`rArr b(b+c)=a(b+c)`
`rArr a=b`
`rArr angle A = 2 angle C`
Now `angle A+ angle B + angle C = pi`
`therefore 2angle C +2 angle C + angle C = pi`
`therefore angle C = (pi)/(5)=(180^(@))/(5)=36^(@)`
`therefore angle A = 72^(@)`
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE|Exercise Multiple Correct Answers Type|13 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE|Exercise Comprehension Type|6 Videos
  • SETS AND RELATIONS

    CENGAGE|Exercise Question Bank|15 Videos
  • STATISTICS

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

Prove that the internal bisector of the angle A of a triangle ABC divides BC in the ratio AB:AC

In triangle ABC , AD⊥BC at D and AE is the bisector of angle A . If angle B=72^circ and angle C=26^circ , then what is the measure of angle DAE ? triangle ABC में, D पर, AD⊥BC है और AE angle A का समद्विभाजक है| अगर angle B=72^circ और angle C=26^circ है तो angle DAE का मान क्या है?