Home
Class 12
MATHS
A straight line L cuts the lines A B ,A ...

A straight line `L` cuts the lines `A B ,A Ca n dA D` of a parallelogram `A B C D` at points `B_1, C_1a n dD_1,` respectively. If `( vec A B)_1,lambda_1 vec A B ,( vec A D)_1=lambda_2 vec A Da n d( vec A C)_1=lambda_3 vec A C ,` then prove that `1/(lambda_3)=1/(lambda_1)+1/(lambda_2)` .

Text Solution

Verified by Experts

Let `vec(AB) = veca, vec(AD) = vecb,` then `vec(AC) = veca+vecb`.
Given `vec(AB)_1 = lamda_1 veca, vec(AD)_1 = lamda_2 vecb, vec(AC)_1 = lamda_3 (veca+vecb) vec(B_1D_1) = vec(AD)_1 - vec(AB)_1= lamda_2 vecb-lamda_1veca`
Since vectors `vec(D_1C_1) and vec(B_1D_1)` are collinear, we have
`" "vec(D_1C_1)=kvec(B_1D_1)` for some `k in R`
`rArr " "vec(AC)_1 - vec(AD)_1= k vec(B_1D_1)`
`rArr " "lamda_3(veca+vecb) -lamda_2vecb=k(lamda_2 vecb-lamda_1veca)`

or `lamda_3 veca+ (lamda_3-lamda_2)vecb= klamda_2vecb - klamda_1veca`
Hence, `lamda_3=-klamda_1 and lamda_3-lamda_2=klamda_2`
`rArr k = -(lamda_3)/(lamda_1)= (lamda_3-lamda_2)/(lamda_2)`
or `" "lamda_1lamda_2= lamda_1lamda_3+lamda_2lamda_3`
or `" "(1)/(lamda_3)= (1)/(lamda_1) + (1)/(lamda_2)`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Single)|34 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Multiple)|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise 1.2|7 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Question Bank|24 Videos

Similar Questions

Explore conceptually related problems

A straight line L cuts the sides AB, AC, AD of a parallelogram ABCD at B_(1), C_(1), d_(1) respectively. If vec(AB_(1))=lambda_(1)vec(AB), vec(AD_(1))=lambda_(2)vec(AD) and vec(AC_(1))=lambda_(3)vec(AC), then (1)/(lambda_(3)) equal to

A B C D parallelogram, and A_1a n dB_1 are the midpoints of sides B Ca n dC D , respectivley . If vec AA_1+ vec A B_1=lambda vec A C ,t h e nlambda is equal to a. 1/2 b. 1 c. 3/2 d. 2 e. 2/3

A B C D isa parallelogram with A C a n d B D as diagonals. Then, vec A C- vec B D= 4 vec A B b. 3 vec A B c. 2 vec A B d. vec A B

If [vec a xxvec bvec d xxvec cvec c xxvec a] = lambda [vec with bvec c] ^ (2) then lambda is equal to

If vec a and vec b are two vectors and lambda>0, then the least value of (1+lambda)|vec a|^(2)+(1+(1)/(lambda))|vec b|^(2) is

If D,E and F are the mid-points of the sides BC, CA and AB respectively of a triangle ABC and lambda is scalar, such that vec(AD) + 2/3vec(BE)+1/3vec(CF)=lambdavec(AC) , then lambda is equal to

If A,B and are collinear find lambda non-collinear such that vec c=(lambda-2)vec a+vec b and vec d=(2 lambda+1)vec a-vec b,vec c and vec d are collinear find lambda

Write the equation of the plane containing the lines vec r= vec a+lambda vec b\ a n d\ vec r= vec a+mu vec c

vec r = lambda (vec a xxvec b) + mu (vec b xxvec c) + gamma (vec c xxvec a) and [vec with bvec c] = (1) / (8), then the value of lambda + mu + gamma =

The position vectors of the vertices A ,Ba n dC of a triangle are three unit vectors vec a , vec b ,a n d vec c , respectively. A vector vec d is such that vecd dot vec a= vecd dot vec b= vec d dot vec ca n d vec d=lambda( vec b+ vec c)dot Then triangle A B C is a. acute angled b. obtuse angled c. right angled d. none of these