Home
Class 12
MATHS
Consider the vectors hat i+cos(beta-alp...

Consider the vectors ` hat i+cos(beta-alpha) hat j+cos(gamma-alpha) hat k ,cos(alpha-beta) hat i+ hat j+"cos"(gamma-beta) hat ka n dcos(alpha-gamma) hat i+cos(beta-gamma) hat k+a hat k ,w h e r ealpha,beta,a n dgamma` are different angles. If these vectors are coplanar, show that `a` is independent of `alpha,beta,a n dgammadot`

Text Solution

Verified by Experts

Since the vectors are coplanar, we have
`" "|{:(1,,cos(beta-alpha),,cos(gamma-alpha)),(cos(alpha-beta),,1,,cos(gamma-beta)),(cos(alpha-gamma),,cos(beta-gamma),,a):}|`
`" "|{:(cosalpha,,sinalpha,,0),(cosbeta,,sinbeta,,0),(cosgamma,,singamma,,a-1):}||{:(cosalpha,,sinalpha,,0),(cosbeta,, sinbeta,,0),(cosgamma,,singamma,,1):}|=0`
`rArr a=1`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Single)|34 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Multiple)|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise 1.2|7 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Question Bank|24 Videos

Similar Questions

Explore conceptually related problems

Consider the vectors hat i+cos(beta-alpha alpha)hat j+cos(gamma-alpha)hat k,cos(alpha-beta)hat i+hat j+cos(gamma-beta)hat kand cos(alpha-gamma)hat i+cos(beta-gamma)hat k+a where alpha,beta, and gamma are different angles.If these vectors are coplanar,show that a is independent of alpha,beta and gamma

If the vectors alpha hat(i) + alpha hat(j) + gamma hat(k). hat(i) + hat(k) and gamma hat(i) + gamma hat(j) + beta hat(k) lie on a plane. Where alpha, beta and gamma are distinct non-negative numbers, they gamma is:

For any vector alpha what (alpha . hat(i)) hat(i) + (alpha.hat(j)) hat(j) + (alpha.hat(k)) hat(k) equal to ?

For any vector vec(alpha) , what is (vec(alpha). hat( i)) hat(i)+(vec(alpha). hat(j)) hat(j)+(vec(alpha). hat(k)) hat(k) equal to ?

cos (alpha + beta) cos gamma-cos (beta + gamma) cos alpha = sin beta sin (gamma-alpha)

Find the values of a for which are vectors vecalpha= hat i+2 hat j+ hat k , vecbeta=a hat i+ hat j+2 hat k\ a n d\ vecgamma= hat i+2 hat j+a hat k are coplanar. \

If the vectors alpha hat(i) + alpha hat(j) + lambda hat(k), hat(i) + hat(k) and lambda hat(i) + lambda hat(j) + beta hat(k) lie on a plane, where alpha, beta and lambda are distinct non-negative numbers, then lambda is

Let alpha, beta, gamma be distinct real numbers. The points with position vectors alpha hati + beta hatj +gamma hat k , beta hati + gamma hatj +alpha hat k , gamma hati +alpha hatj + beta hatk

The lines vec r=(hat i+hat j+hat k)alpha+3hat k and vec r=(hat i-2hat j+hat k)beta+3hat k