Home
Class 12
MATHS
In a quadrilateral P Q R S , vec P Q= ve...

In a quadrilateral `P Q R S , vec P Q= vec a , vec Q R , vec b , vec S P= vec a- vec b ,M` is the midpoint of ` vec Q Ra n dX` is a point on `S M` such that `S X=4/5S Mdot` Prove that `P ,Xa n dR` are collinear.

Text Solution

Verified by Experts

`vec(OM) = (vecb)/(2) rArr vec(PM) = veca + (vecb)/(2)`

`vec(SM) = vec(PM) -vec(PS) = 2veca-(1)/(2) vecb`
`vec(SX) = (4)/(5) vec(SM) = (8)/(5) veca - (2)/(5) vecb`
`vec(PX)= vec(PS) + vec(SX)`
`" "=-veca+vecb+ (8)/(5) veca- (2)/(5) vecb= (3)/(5) (veca+ vecb)`
Also `vec(PR) = vec(PQ) + vec(QR) = veca+ vecb= (5)/(3) vec(PX)`
Hence P, X and R are collinear.
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Single)|34 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Multiple)|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise 1.2|7 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Question Bank|24 Videos

Similar Questions

Explore conceptually related problems

In a quadrilateral PQRS,vec PQ=vec a,vec QR,vec bR,vec b,vec SP=vec a-vec b,M is the midpoint of vec QR and X is a point on SM such that SX=(4)/(5)SM. Prove that P,X and R are collinear.

If vec P xx vec Q= vec R, vec Q xx vec R= vec P and vec R xx vec P = vec Q then

If vec p = vec a + vec b, vec q = vec a-vec b | vec a | = | vec b | = 1 then | vec p xxvec q | =

if vec(P) xx vec(R ) = vec(Q) xx vec(R ) , then

If vec r=3vec p+4vec q and 2vec r=vec p-3vec q then

If vec P+ vec Q = vec R and |vec P| = |vec Q| = | vec R| , then angle between vec P and vec Q is

If vec p xxvec q=vec r and vec p*vec q=c, then vec q is

For three vectors vec p,vec q and vec r if vec r=3vec p+4vec q and 2vec r=vec p-3vec q then

If vec P and vec Q are two vectors, then the value of (vec P + vec Q) xx (vec P - vec Q) is

If |vec P xx vec Q|=PQ then the angle between vec P and vec Q is