Home
Class 12
MATHS
Statement 1 : veca = 3 veci + p vecj +3v...

Statement 1 : `veca = 3 veci + p vecj +3veck and vecb = 2veci + 3vecj + qveck` are parallel vectors if `p = 9//2 and q =2`.
Statement 2 : If `veca= a_1 veci + a_2 vecj + a_3 veck and vecb = b_1 veci + b_2 vecj + b_3veck` are parallel, then `(a_1)/(b_1) = (a_2)/(b_2)= (a_3)/(b_3) `.

A

Both the statements are true, and Statement 2 is the correct explanation for Statement 1.

B

Both the statements are true, but Statement 2 is not the correct explanation for Statement 1.

C

Statement 1 is true and Statement 2 is false.

D

Statement 1 is false and Statement 2 is true.

Text Solution

Verified by Experts

The correct Answer is:
A

`(3)/(2) = (p)/(q) = (3)/(q) rArr p = (9)/(2) and q =2 `
Thus, both the statements are true and Statement 2 is the correct explanation for Statement 1.
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise LINKED COMPREHENSION TYPE|2 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Comprehension)|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise Exercise (Multiple)|13 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Question Bank|24 Videos

Similar Questions

Explore conceptually related problems

If vecA=2veci+3vecj+4veck and vecB=4veci+3vecj+2veck, find vecAxxvecB .

IF veca=2veci+3vecj+4veck and vecb =4veci+3vecj+2veck find the angle between veca and vecb .

Let veca=2veci+3vecj+4veck and vecb=3veci+4vecj+5veck . Find the angle between them.

Show that the vectors veca=2veci+3vecj and vecb =6 veci-4vecj are at right angles to each other.

If veca=veci+vecj+veck, veca.vecb=1 and vecaxxvecb=vecj-veck, then vecb equals

Calculate the angle between the vectors veca=3veci+2vecj and vecb=2veci+vecj

If points A (60 veci + 3vecj ) , B (40 veci - 8 vec j) and C ( a veci - 52 vecj ) are collinear then a is equal to

Find the angle between veca=3veci+3vecj-3veck and vecb=2veci+vecj+3veck .

If veca=veci + vecj , vecb=2vecj + veck , then value of veca.vecb is a) 2 b) -2 c) -3 d) 3