Home
Class 12
MATHS
The base vectors veca(1), veca(2) and ve...

The base vectors `veca_(1), veca_(2)` and `veca_(3)` are given in terms of base vectors `vecb_(1), vecb_(2)` and `vecb_(3)` as `veca_(1) = 2vecb_(1)+3vecb_(2)-vecb_(3)`, `veca-(2)=vecb_(1)-2vecb_(2)+2vecb_(3)` and `veca_(3) =-2vecb_(1) + vecb_(2)-2vecb_(3)`, if `vecF = 3vecb_(1)-vecb_(2)+2vecb_(3)`, then vector `vecF` in terms of `veca_(1), veca_(2)` and `veca_(3)` is

A

`vecF=3veca_(1) + 2veca_(2) + 5veca_(3)`

B

`vecF=3veca_(1) - 5veca_(2)-2veca_(3)`

C

`vecF=3veca_(1)+5veca_(2)+3veca_(3)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

`veca_(1)=2vecb_(1)+3vecb_(2)-vecb_(3)`
`veca_(2)=vecb_(1)-2vecb_(2)+2vecb_(3)`
`veca_(3)=-2vecb_(1)+vecb_(2)-2vecb_(3)`
Let `vecF = lambda_(1)veca_(1)+lambda_(2)-2lambda_(3)vecb_(1)+(3lambda_(1)-2lambda_(2)+lambda_(3))vecb_(2)+(-lambda_(1)+2lambda_(2)-2lambda_(3))vecb_(3)=3vecb_(1)-vecb_(2)+2vecb_(3)`
Comparing coefficients of `b_(1),b_(2)` and `b_(3)`
(`therefore vecb_(1),vecb_(2)` and `vecc_(3)` are base vectors hence non-coplanar)
`2lambda_(1)+lambda_(2)-2lambda_(3)=-1`
`-lambda_(1)+2lambda_(2)-2lambda_(2)=2`
Solving above equations, we get
`lambda_(1)=2`
`lambda_(2)=5`
`lambda_(3)=3`
`therefore vecF=2veca_(1)+5veca_(2)+3veca_(3)`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Question Bank|30 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos

Similar Questions

Explore conceptually related problems

The base vectors veca_1,veca_2,veca_3 are given in terms of base vectors vecb_1,vecb_2,vecb_3 as veca_1=2vecb_1+3vecb_2-vecb_3, veca_2=vecb_1-2vecb_2+vecb_3 and veca_3= 2vecb_1+vecb_2-2vecb_3. If vecF=3vecb_1-vecb_2+2vecb_3 then express vecF in terms of veca_1, veca_2 and veca_3.

If vece_(1) = ( 1,1,1) and vece_(2) = ( 1,1,-1) and veca and vecb are two vectors that vece_(1) = 2veca +vecb and vece_(2) veca + 2vecb then angle between veca and vecb is

The formula (veca + vecb)^(2)= a^(-2) + vecb^(2) + 2veca xx vecb valid for non zero vectors veca and vecb .

If vecr.veca=0, vecr.vecb=1and [vecr vecavecb]=1,veca.vecbne0,(veca.vecb)^(2)-|veca|^(2)|vecb|^(2)=1, then find vecr in terms of veca and vecb .

If vecr.veca=0, vecr.vecb=1and [vecr vecavecb]=1,veca.vecbne0,(veca.vecb)^(2)-|veca|^(2)|vecb|^(2)=1, then find vecr in terms of veca and vecb .

For two vectors veca and vecb,veca,vecb=|veca||vecb| then (A) veca||vecb (B) veca_|_vecb (C) veca=vecb (D) none of these

Show that (veca xx vecb)^(2) = |veca| ^(2) |vecb|^(2) - (veca.vecb)^(2) = |(veca.veca)/(veca. vecb)(veca.vecb)/(vecb.vecb)|

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

|veca pm vecb|^2 = |veca|^2 + |vecb|^2 pm 2|veca||vecb|cos theta and (veca + vecb).(veca - vecb) = |veca|^2 - |vecb|^2

IF |veca|=sqrt(3), |vecb|=2 and |veca-vecb|=3 find the angle between veca and vecb .