Home
Class 12
MATHS
If a(1) and a(2) are two values of a for...

If `a_(1)` and `a_(2)` are two values of a for which the unit vector `aveci + bvecj +1/2veck` is linearly dependent with `veci+2vecj` and `vecj-2veck`, then `1/a_(1)+1/a_(2)` is equal to

A

1

B

`1/8`

C

`-16/11`

D

`-11/16`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the values of \( a_1 \) and \( a_2 \) such that the vector \( \vec{a} = a \hat{i} + b \hat{j} + \frac{1}{2} \hat{k} \) is linearly dependent on the vectors \( \vec{v_1} = \hat{i} + 2\hat{j} \) and \( \vec{v_2} = \hat{j} - 2\hat{k} \). ### Step 1: Set Up the Linear Dependence Condition The vectors \( \vec{a} \), \( \vec{v_1} \), and \( \vec{v_2} \) are linearly dependent if there exist scalars \( \lambda_1 \) and \( \lambda_2 \) such that: \[ \vec{a} = \lambda_1 \vec{v_1} + \lambda_2 \vec{v_2} \] ### Step 2: Write the Vectors in Component Form We can express the vectors as follows: - \( \vec{a} = a \hat{i} + b \hat{j} + \frac{1}{2} \hat{k} \) - \( \vec{v_1} = \hat{i} + 2\hat{j} + 0\hat{k} \) - \( \vec{v_2} = 0\hat{i} + 1\hat{j} - 2\hat{k} \) ### Step 3: Equate Components From the linear combination, we have: \[ a \hat{i} + b \hat{j} + \frac{1}{2} \hat{k} = \lambda_1 (\hat{i} + 2\hat{j}) + \lambda_2 (0\hat{i} + \hat{j} - 2\hat{k}) \] This leads to the following equations by equating coefficients: 1. For \( \hat{i} \): \( a = \lambda_1 \) 2. For \( \hat{j} \): \( b = 2\lambda_1 + \lambda_2 \) 3. For \( \hat{k} \): \( \frac{1}{2} = -2\lambda_2 \) ### Step 4: Solve for \( \lambda_2 \) From the third equation: \[ \lambda_2 = -\frac{1}{4} \] ### Step 5: Substitute \( \lambda_2 \) into the Second Equation Substituting \( \lambda_2 \) into the second equation: \[ b = 2\lambda_1 - \frac{1}{4} \] ### Step 6: Express \( b \) in Terms of \( a \) Since \( a = \lambda_1 \), we can write: \[ b = 2a - \frac{1}{4} \] ### Step 7: Use the Unit Vector Condition The vector \( \vec{a} \) is a unit vector, which means: \[ \sqrt{a^2 + b^2 + \left(\frac{1}{2}\right)^2} = 1 \] Squaring both sides gives: \[ a^2 + b^2 + \frac{1}{4} = 1 \] Thus, \[ a^2 + b^2 = \frac{3}{4} \] ### Step 8: Substitute for \( b \) Substituting \( b = 2a - \frac{1}{4} \) into the equation: \[ a^2 + \left(2a - \frac{1}{4}\right)^2 = \frac{3}{4} \] Expanding the equation: \[ a^2 + (4a^2 - a + \frac{1}{16}) = \frac{3}{4} \] Combining terms: \[ 5a^2 - a + \frac{1}{16} - \frac{12}{16} = 0 \] This simplifies to: \[ 5a^2 - a - \frac{11}{16} = 0 \] ### Step 9: Apply the Quadratic Formula Using the quadratic formula \( a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( A = 5, B = -1, C = -\frac{11}{16} \): \[ a = \frac{1 \pm \sqrt{(-1)^2 - 4 \cdot 5 \cdot \left(-\frac{11}{16}\right)}}{2 \cdot 5} \] Calculating the discriminant: \[ 1 + \frac{220}{16} = \frac{236}{16} = \frac{59}{4} \] Thus, \[ a = \frac{1 \pm \frac{\sqrt{59}}{2}}{10} = \frac{1 \pm \sqrt{59}}{20} \] ### Step 10: Find \( \frac{1}{a_1} + \frac{1}{a_2} \) Let \( a_1 = \frac{1 + \sqrt{59}}{20} \) and \( a_2 = \frac{1 - \sqrt{59}}{20} \): \[ \frac{1}{a_1} + \frac{1}{a_2} = \frac{a_1 + a_2}{a_1 a_2} \] Calculating \( a_1 + a_2 \) and \( a_1 a_2 \): \[ a_1 + a_2 = \frac{1 + \sqrt{59} + 1 - \sqrt{59}}{20} = \frac{2}{20} = \frac{1}{10} \] \[ a_1 a_2 = \frac{(1 + \sqrt{59})(1 - \sqrt{59})}{400} = \frac{1 - 59}{400} = -\frac{58}{400} = -\frac{29}{200} \] Thus, \[ \frac{1}{a_1} + \frac{1}{a_2} = \frac{\frac{1}{10}}{-\frac{29}{200}} = -\frac{20}{29} \] ### Final Answer \[ \frac{1}{a_1} + \frac{1}{a_2} = -\frac{20}{29} \]

To solve the problem, we need to determine the values of \( a_1 \) and \( a_2 \) such that the vector \( \vec{a} = a \hat{i} + b \hat{j} + \frac{1}{2} \hat{k} \) is linearly dependent on the vectors \( \vec{v_1} = \hat{i} + 2\hat{j} \) and \( \vec{v_2} = \hat{j} - 2\hat{k} \). ### Step 1: Set Up the Linear Dependence Condition The vectors \( \vec{a} \), \( \vec{v_1} \), and \( \vec{v_2} \) are linearly dependent if there exist scalars \( \lambda_1 \) and \( \lambda_2 \) such that: \[ \vec{a} = \lambda_1 \vec{v_1} + \lambda_2 \vec{v_2} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Question Bank|30 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos

Similar Questions

Explore conceptually related problems

A unit vector coplanar with veci + vecj + 2veck and veci + 2 vecj + veck and perpendicular to veci + vecj + veck is _______

A unit vector coplanar with veci + vecj + 2veck and veci + 2 vecj + veck and perpendicular to veci + vecj + veck is _______

The number of vectors of unit length perpendicular to the vectors veca = 2veci + vecj + 2veck and vecb = vecj + veck is:

Write the unit vector in the direction of vecA=5veci+vecj-2veck .

Show that the vectors veci-3vecj+2veck, 2veci -4vecj-veck and 3veci+2vecj-veck are linearly independent.

If vec(a_(1)) and vec(a_(2)) are two non-collinear unit vectors and if |vec(a_(1)) + vec(a_(2))|=sqrt(3) , then the value of (vec(a_(1))-vec(a_(2))). (2 vec(a_(1))+vec(a_(2))) is :

If vec A_(1) and vec A_(2) are two non-collinear unit vectors and if |vec A_(1)+vec A_(2)|=sqrt(3) then the value of (vec A_(1)-vec A_(2))*(2vec A_(1)+vec A_(2)) is

Find the equation of the plane through the point 2veci+3vecj-veck and perpendicular to the vector 3veci-4vecj+7veck .

If vec a_(1) and vec a_(2) are two non collinear unit vectors inclined at 60^(0) to each other than the value of (vec a_(1)-vec a_(2))*(2vec a_(1)+vec a_(2)) is

Find the vector equation of the through the points 2veci+vecj-3veck and parallel to vector veci+2vecj+veck